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Justi�cation

Why should we use intervals?

Figure 1 : SPD [dB/Hz] vs Frequency [Hz]
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Justi�cation

Why should we use intervals?

I Which measurement is the most reliable one?

I If you do not know the value, at least a bounding can be

established

I How to estimate the error?
I Uncertainty - Dispersion

I Modelling complex dynamics with low information available.
I Robustness
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The Interval Number System

De�nition - Notation

Consider the closed interval denoted by [a, b] which represents the
set of real numbers given by

[a, b] = {x ∈ (R) : a ≤ x ≤ b}

De�ne I (R) := { [a, b] : a ≤ b, a, b ∈ R} be the set of all closed
intervals of R. We say a interval [a, b] is degenerate if a = b.

We adopt the in�mum-supremum notation for intervals:

X = [X L,XU ] with X L, XU ∈ R

X = Y if X L = Y L ∧ XU = Y U

5 / 55



The Interval Number System

Relevance of Intersection

Intersection plays a key role in interval analysis. If we have two
intervals containing a result of interest � regardless of how they
were obtained � then the intersection, which may be narrower, also
contains the result.

Figure 2 : Intersection of measurements.
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The Interval Number System

Width, Absolute Value, Midpoint (I)

Length

l(X ) := XU − X L

Absolute Value

|X | := max
{∣∣X L

∣∣ , ∣∣XU
∣∣}

Midpoint

m(X ) :=
1

2
(X L + XU)
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The Interval Number System

Width, Absolute Value, Midpoint (II)

Figure 3 : Width, absolute value, and midpoint of an interval.
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Operations of Interval Arithmetic

De�nition of Arithmetic Operations

Let � ∈ {+,−, ·, /} be a binary operation in the real numbers, e.g.,
addition, subtraction, multiplication and division.

X � Y := {x � y : x ∈ X , y ∈ Y }

In order to simplify notation, the interval [x , x ] will be referred as the
real number x itself, whenever the context is clear.
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Operations of Interval Arithmetic

Endpoint Formulas for the Arithmetic Operations

Let X , Y ∈ I (R). It can be shown that:

1. X + Y =
[
X L + Y L, XU + Y U

]
Example

2. −Y =
[
−Y U , −Y L

]
Example

3. X − Y = X + (−Y ) =
[
X L − Y U , XU − Y L

]
Example

4. kX =
[
kX L, kXU

]
Example

5. XY = [min S , max S ], where
S =

{
X LY L,X LY U ,XUY L,XUY U

}
Example

6. 1/Y =
[
1/Y U , 1/Y L

]
Example

7. X/Y = X · (1/Y ) Example
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Operations of Interval Arithmetic

Embedding I (R) in a Vector Space

Structure of I (R)
Because of this lack of inverse elements under addition, I (R) can
not constitute a vector space by itself. However, the work from
Radstroem develops the theory of an extension set via equivalence
relations in which a commutative semigroup in which the law of
cancellation holds, as is indeed true in I (R), can be embedded in a
vector space N where the product λA for λ ≥ 0 coincides with the
one given on I (R).
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Operations of Interval Arithmetic

Hukuhara Di�erence

Di�erence

Let X = [X L,XU ] and Y = [Y L,Y U ] be two closed intervals in R.
If X L − Y L ≤ XU − Y U , then the Hukuhara di�erence Z = X 	 Y

exists and Z = [ZL,ZU ] = [X L − Y L,XU − Y U ]. Example

Note

The usual subtraction and the Hukuhara di�erence between two
intervals need not be the same:

[X L − Y U , XU − Y L] = X − Y 6= X 	 Y = [X L − Y L,XU − Y U ]
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Limits and Continuity

Hausdor� Metric

Let X , Y ⊆ Rn. Then the Hausdor� metric between X and Y is
de�ned by

dH(X ,Y ) = max

{
sup
x∈X

inf
y∈Y
‖x − y‖, sup

y∈Y
inf
x∈X
‖x − y‖

}

where ‖·‖ is a norm in Rn.

If X = [X L,XU ] and Y = [Y L,Y U ] are two closed intervals in R, it
is not hard to see that

dH(X ,Y ) = max
{
|X L − Y L|, |XU − Y U |

}
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Limits and Continuity

Convergence

Convergence in I (R)
Let {Xn} and X ∈ I (R). We say that the sequence of intervals {Xn}
converges to X , denoted by limn→∞ Xn = X , if, for every ε > 0,
there exists N ∈ N, such that, for n ≥ N, we have dH(Xn,X ) < ε.

Lemma

lim
n→∞

Xn = X if and only if X L
n → X L ∧ XU

n → XU
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Limits and Continuity

Functions in I (R) (I)

Interval-valued Function

The function f : Rn → I (R) de�ned on an Euclidean space Rn is
called an interval-valued function. This function can also be written
as f (x) = [f L(x), f U(x)], where f L and f U are real-valued functions
de�ned on Rn and satisfy f L(x) ≤ f U(x) for every x ∈ Rn.

Limit of a Function

For c ∈ Rn we write limx→c f (x) = X if, for every ε > 0, there exists
δ > 0 such that, for ‖x− c‖ < δ, we have dH(f (x),X ) < ε.
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Limits and Continuity

Functions in I (R) (II)

Lemma

Let f be an interval-valued function de�ned on Rn and X = [X L,XU ]
be an interval in R. Then limx→c f (x) = X if and only if
limx→c f

L(x) = X L and limx→c f
U(x) = XU .

Continuity

Let f be an interval-valued function de�ned on Rn. We say that f
is continuous at c ∈ Rn if

lim
x→c

f (x) = f (c)
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Limits and Continuity

Example

Figure 4 : Graphic representation f (x) = [x2 + x + 1, x2 + 3].
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Order Relations for Intervals

Order Relations

Let X = [X L,XU ] and Y = [Y L,Y U ] ∈ I (R). It is possible to ex-
press X as a function of its center and width, as X = 〈m(X ), w(X )〉.

Order Relations

X �LU Y if and only if X L ≤ Y L and XU ≤ Y U

X �CW Y if and only if m(X ) ≤ m(Y ) and w(X ) ≤ w(Y )

X �UC Y if and only if XU ≤ Y U and m(X ) ≤ m(Y )
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Order Relations for Intervals

Order Relations

Figure 5 : a) �LU b) �CW c) �UC
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Di�erentiability

Weak Di�erentiability

Weak Di�erentiability

Let X be an open set in R. An interval-valued function f : X → I (R)
with f (x) = [f L(x), f U(x)] is called weakly di�erentiable at x0 if the
real valued functions f L and f U are di�erentiable at x0 (in the usual
sense).
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Di�erentiability

H-Di�erentiability (I)

Derivative

Let X be an open set in R. We say f : X → I (R) is H-di�erentiable
(strongly di�erentiable) at x0 if there exists A(x0) ∈ R(R) such that

lim
h→0+

f (x0 + h)	 f (x0)

h
and lim

h→0+

f (x0)	 f (x0 − h)

h

both exist and are equal at A(x0). Then A(x0) is the H-derivative of
f at x0.
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Di�erentiability

H-Di�erentiability (II)

Theorem

Let X be an open set in R and f : X → I (R) an interval-valued
function de�ned on X . Suppose that f is weakly di�erentiable at x0
with derivatives (f L)′(x0) = ÂL(x0) and (f U)′(x0) = ÂU(x0).

1. If f L(x0 + h)− f L(x0) ≤ f U(x0 + h)− f U(x0) and
f L(x0)− f L(x0 − h) ≤ f U(x0)− f U(x0 − h) for every h > 0,
then f is H-di�erentiable at x0 with H-derivative
A(x0) = [ÂL(x0), ÂU(x0)].

2. If ÂU(x0) > ÂL(x0), then f is H-nondi�erentiable at x0.
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Optimization Problem Formulation - KKT Conditions

Optimization Problems

Problem (RVOP)

min f (x) = f (x1, ..., xn)

subject to gi (x) ≤ 0

Problem (IVOP)

min f (x) = [f L(x1, ..., xn), f
U(x1, ..., xn)] = [f L(x), f U(x)]

subject to gi (x) ≤ 0
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Optimization Problem Formulation - KKT Conditions

Solution Types

Type-I

Let x∗ be a feasible solution, i.e., x∗ ∈ X . We say that x∗ is a
type-I solution of problem (IVOP) if there exists no x ∈ X such that
f (x) ≺LU f (x∗).

Type-II

Let x∗ be a feasible solution, i.e., x∗ ∈ X . We say that x∗ is a
type-II solution of problem (IVOP) if there exists no x ∈ X such that
f (x) ≺LU f (x∗) or f (x) ≺CW f (x∗).
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Optimization Problem Formulation - KKT Conditions

KKT Conditions

Theorem (Wu [2])

Assume that the constraint functions gi : Rn → R are convex on
Rn for i = 1, ...,m. Let X = {x ∈ Rn : gi (x) ≤ 0, i = 1, ...,m}
be a feasible set and a point x∗ ∈ X . Suppose that the interval-

valued objective function f : Rn → I (R) is LU-convex and weakly

continuously di�erentiable at x∗ ∈ Rn. If there exist (Lagrange)
multipliers 0 < λL, λU ∈ R and 0 ≤ µi ∈ R, i = 1, ...,m, such that

1. λL∇f L(x∗) + λU∇f U(x∗) +
∑m

i=1
µi∇gi (x∗) = 0

2. µigi (x∗) = 0 for all i = 1, ...,m.

then x∗ is a type-I and type-II, i.e. optimal under the selected order
relation, solution of problem (IVOP).
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Applications

Interval-Valued Polynomial

Interval-Valued Polynomial

Let ci = [cLi , c
U
i ] ∈ I (R) for i ∈ N. We say p(x) is an interval-valued

polynomial if it can be expressed in the form

p(x) =
n∑
i=0

ci · x i =
n∑
i=0

[cLi , c
U
i ] · x i
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Applications

Matrix Representation

Vandermonde Matrix

Let ci = [cLi , c
U
i ] ∈ I (R) for i ∈ {1, ..., n}.

y1...
ym

 =


1 x1 x2

1
· · · xn

1

1 x2 x2
2
· · · xn

2

...
...

...
. . .

...
1 xm x2m · · · xnm


c0...
cn

+

ε0...
εn


Y = VC + E

In this case, V is called a Vandermonde matrix.
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Applications

Example

Figure 6 : Interval-valued polynomial graphic.
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Applications

What do we look for?

In a nutshell

Find a parameter con�guration that reduces at most as possible the
discrepancies between the observed data and the information pro-
vided by the model proposed.

min
m∑
i=1

[m(yi )−m(ŷi )]
2

`2 Norm - Least Squares

min
m∑
i=1

dH (yi , ŷi )

`1 Norm - Least Absolute Values
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Applications

`2 Norm - Least Squares Estimation

Figure 7 : Parameter estimation result using OLS.
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Applications

`1 Norm - Heuristic

Figure 8 : Parameter estimation result using Di�erential Evolution.
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Applications

`1 Norm - CVX

Figure 9 : Parameter estimation result using CVX .
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Applications

Chaotic Behaviour

Weierstrass Function

In order to evaluate the feasibility of an estimations of the parameters
of a model using real data, the used techniques were tested using
data sampled from a Weierstrass function, which is an example of a
pathological real-valued function on the real line, given by

f (x) =
∞∑
n=0

an cos (bnπx)
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Applications

Chaotic Behaviour

Figure 10 : Weierstrass Function Model.
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Applications

Experimental Data

Spectral Power Density Measurements

Using hydrophones, measurements of the spectral power density of
the sound signals generated by vessels were performed in order to
develop a characterization of such crafts. In total 36 measurements
were performed, however 12 of those were discarded due to factors
that generated changes in behaviour of the spectrum, for example,
changes in the speed of the boat and its engines.
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Applications

Experiment Design

Figure 11 : Experiment designed for the sampling process.
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Applications

Experimental Data

Figure 12 : Measurements - SPD [dB/Hz] vs Frequency [Hz].

37 / 55



Applications

Mathematical Model

Fourier Series

In order to describe this behaviour a Fourier series model was pro-
posed. A Fourier series is a way to represent a wave-like function as
the sum of simple sine waves, decomposing the signal into the sum of
a (possibly in�nite) set of simple oscillating functions, namely sines
and cosines, as follows:

f (x) = a0 +
n∑
i=1

ai cos (iwx) + bi sin (iwx)
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Applications

Upper - Lower Bounding

Figure 13 : Fitted lower bound. Figure 14 : Fitted upper bound.
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Applications

Upper - Lower Bounding

Figure 15 : Fitted model bounds.
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Applications

Mathematical Model

Fourier Series

Using these estimations an interval-valued function was proposed to
enclose the volatility of the measurements using Fourier series to
describe the lower and upper functions, i.e. f : R → I (R), given
by f (x) =

[
f L(x), f U(x)

]
, where the bounding functions can be

expressed by:

f L(x) = aL0 +
n∑
i=1

aLi cos
(
iwLx

)
+ bLi sin

(
iwLx

)

f U(x) = aU0 +
n∑
i=1

aUi cos
(
iwUx

)
+ bUi sin

(
iwUx

)
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Applications

Estimated Model

Figure 16 : Interval-valued plot of the estimated Fourier series model.
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Applications

Modeled Behaviour

Figure 17 : Real data vs Model output.
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Examples

Addition - Example

Addition

X = [1, 2] Y = [−4, 5]

X + Y = [1, 2] + [−4, 5] = [1+ (−4), 2+ 5] = [−3, 7]

Back to Operations
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Examples

Negative - Example

Negative

X = [−5, 2]

−X = [−2, −(−5)] = [−2, 5]

Back to Operations
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Examples

Substraction - Example

Substraction

X = [−5, 2] Y = [−1, 9]

X + (−Y ) = [−5, 2] + [−9, 1] = [−14, 3]

Back to Operations
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Examples

Scalar Multiplication - Example

Scalar Multiplication (I)

X = [−5, 2] k = 3

3X = [−5 · 3, 2 · 3] = [−15, 6]

Back to Operations

Scalar Multiplication (II)

X = [−5, 2] k = −8

−8X = [2 · −8, −5 · −8] = [−16, 40]

Back to Operations
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Examples

Product - Example

Product

X = [−5, 2] Y = [−1, 9]

S = {(−5)(−1), (−5)(9), (2)(−1), (2)(9)}

XY = [min S , max S ] = [−45, 18]

Back to Operations
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Examples

Multiplicative Inverse - Example

Multiplicative Inverse (I)

X = [2, 8]→ 1

X
=

[
1

8
,
1

2

]
Back to Operations

Multiplicative Inverse (II)

X = [−1, 5]

1

X
=

{
1

x
: x ∈ X

}
= (−∞,∞)

Back to Operations
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Examples

Division - Example

Division

X = [−5, 2] Y = [3, 7]

1

Y
=

[
1

7
,
1

3

]
S =

{
(−5)

(
1

7

)
, (−5)

(
1

3

)
, (2)

(
1

7

)
, (2)

(
1

3

)}
X

Y
= [min S , max S ] =

[
−5
3
,
2

3

]
Back to Operations
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Examples

Hukuhara Di�erence - Example

Hukuhara Di�erence

X = [−5, 2] Y = [−1, 3]

X 	 Y = [−5, 2]	 [−1, 3] = [−5− (−1), 2− 3]

X 	 Y = [−4, −1]

Back to H-Di�erence
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Examples

Additive Inverses - Example

Additive Inverses

X = [−5, 2]

Usual Di�erence

X − X = [−5, 2]− [−5, 2] = [−5, 2] + [−2, 5]

X − X = [−7, 7] = 7[−1, 1] 3 [0, 0]

Hukuhara Di�erence

X 	 X = [−5, 2]	 [−5, 2] = [−5− (−5), 2− 2] = [0, 0]

Back to main
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Examples

Multiplicative Inverses - Example

Multiplicative Inverses

X = [3, 7]

1

X
=

[
1

7
,
1

3

]
S =

{
(3)

(
1

7

)
, (3)

(
1

3

)
, (7)

(
1

7

)
, (7)

(
1

3

)}
X

X
= [min S , max S ] =

[
3

7
,
7

3

]
3 [1, 1]

Back to main

55 / 55


	Justification
	The Interval Number System
	Operations of Interval Arithmetic
	Limits and Continuity
	Order Relations for Intervals
	Differentiability
	Optimization Problem Formulation - KKT Conditions
	Applications
	References
	Appendix
	Examples


