NURSE SCHEDULING PROBLEM

Sebastián Mesa-Duque
Tutor: Juan Carlos Rivera
Functional Analysis and Applications Research Group
Universidad EAFIT
2015

AGENDA

1. Introduction
2. State of the art
3. Nurse Scheduling Competition
4. Problem Definition
5. Mathematical Model
6. Conclusions and future work

INTRODUCTION

- Very important when managing all kinds of employees and resources.
- Specially important and complex to healthcare professionals.
- As seen in Burke et al.(2004), scheduling approached by several investigators for more than 40 years.
- Until recently solved manually in a very time consuming process.
- First papers were based on a strictly mathematical approach.
- Heuristic and metaheuristic approaches are seen later.

STATE OF THE ART

- As observed in (Burke et al. 2004) many different approaches have been used to solve the NSP
- Stochastic programming
- Linear and quadratic models
- ANSOS
- Multi objective
- Expert systems and artificial intelligence
- All kinds of heuristics

NURSE ROSTERING COMPETITION

- International competition
- Second iteration

INRC-II

The Second International Nurse Rostering Competition

- Combinatorial Optimization and Decision Support (CODeS)
coDes

- Kulak University (Belgium)
- Patrick De Causmaecker
- Scheduling and timetabling group
- University of Uldine (Italy)
- Sara Cheschia and Andrea Schaerf
- Methodologies for Optimization and Decision Support in the Healthcare Sector (MoBiZ)
- Vives University (Belgium)
- Stefaan Haspeslagh

TOP OF LAST COMPETITION

Valois et al. (2010)

- Strictly mathematical approach
- Partition into 2 sub problems or phases

Nonobe (2010)

- Metaheuristic for a COP
- Tabu search with an easy transformation
- Use of binary variables

Zhipeng and JinHao (2010)

- Adaptive local search
- Multi start
- Diferent neighborhoods
- Different strategies to explore neigborhoods

Burke et al. (2010)

- Use of previously developed staff rostering model
- Variable depth search and branch and pricing

PROBLEM DEFINITION

- According to Chesia et al.(2014)
- Basic problem
- Weekly scheduling of a fixed number of nurses.
- Each day split in shifts.
- Skills with different requirements.

General Problem

- Solution to the problem for a set of n weeks.
- Requests of the nurses accounted for as soft constraints.
- History of every week and overall history to account for contractual constraints.

MATHEMATICAL MODEL

$$
\begin{aligned}
& \text { min } Z=\Delta Z_{1}+\Delta Z_{2}+\Delta Z_{3}+\Delta Z_{4}+\Delta Z_{5}+\Delta Z_{6}+\Delta Z_{7} \\
& \text { s.t. } \sum_{s \in S} \sum_{k \in K} x_{n s d k}=1, \forall n \in N, d \in D \\
& \\
& \quad \sum_{n \in N} x_{n s d k} \cdot r_{n k} \geq R M_{s d k}, \quad \forall s \in S, d \in D, k \in K \\
& \\
& \quad \sum_{k \in K}\left(x_{n, s_{1}, d-1, k}+x_{n, s_{2}, d, k}\right) \leq 1, \\
& \quad \forall n \in N, d \in D \backslash\{1\}, \quad\left(s_{1}, s_{2}\right) \in P
\end{aligned}
$$

(1) Main Model
(2) Binary variables $x_{n s d k}$ for nurse n in shift s on day d with skill s.

- Use of soft constraints as decision variables ΔZ_{i}.
- RM: Required Minimum nurses

MATHEMATICAL MODEL

$$
\begin{align*}
& \sum_{n \in N} x_{n s d k} \cdot r_{n k}+M_{s d k} \geq R O_{s d k}, \quad \forall s \in S, d \in D, k \in K \tag{5}\\
& \Delta Z_{1}=C_{1} \cdot \sum_{s \in S} \sum_{k \in K} M_{s d k}
\end{align*}
$$

(6)

Soft restriction 1

- Optimal number of nurses
- RO: required optimum
- M: difference between optimal and actual

MATHEMATICAL MODEL

$$
\begin{aligned}
& \sum_{d=d_{0}}^{d_{f}} \sum_{k \in K} x_{n s d k}+N M C A S_{n s d_{0}} \geq \\
& M I N C A S_{s} \cdot \sum_{k \in K}\left(x_{n s d_{0} k}-x_{n, s, d_{0}-1, k}\right), \\
& \forall n \in N, s \in S, d_{0} \in D \backslash\{1\}, d_{0} \leq|D|-M I N C A S_{s}+1, \\
& d_{f}=d_{0}+M I N C A S_{s}-1 \\
& \sum_{k \in K} B D_{n s k}+\sum_{k \in K} \sum_{d=1}^{d_{f}} x_{n s d k}+N M C A S_{n, s, 1} \geq \\
& M I N C A S_{s} \cdot \sum_{k \in K}\left(x_{n, s, 1, k}-I B D_{n s k}\right), \\
& \forall n \in N, s \in S, d_{f}=M I N C A S_{s}-B D_{n s k}
\end{aligned}
$$

Soft restriction 2

- Consecutive assignments per shifts
- NMCAS: Number of Missing consecutive assignments
- MINCAS: Minimum Consecutive assignments
- BD: Border data

MATHEMATICAL MODEL

$$
\begin{align*}
& \sum_{d=d_{0}}^{d_{f}} \sum_{k \in K} x_{n s d k}-N E C A S_{n s d_{0}} \leq \text { MAXCAS }_{s}, \tag{9}\\
& \forall n \in N, s \in S, d_{0} \in D \backslash\{1\}, d_{f}=\min \left\{d_{0}+\text { MAXCAS }_{s},|D|\right\} \\
& \sum_{k \in K} B D_{n s k}+\sum_{k \in K} \sum_{d=1}^{d_{f}} x_{n s d k}-N E C A S_{n, s, 1} \leq \text { MAXCAS }_{s}, \tag{10}\\
& \forall n \in N, s \in S, d_{f}=M A X C A S_{s}-B D_{n s k}+1 \\
& \Delta Z_{2}=C_{2} \cdot \sum_{n \in N} \sum_{s \in S} \sum_{d \in D}\left(N M C A S_{n s d}+N E C A S_{n s d}\right)
\end{align*}
$$

Soft restriction 2

- NECAS: Number of Extra consecutive assignments
- MAXCAS: Maximum consecutive assignments

MATHEMATICAL MODEL

$$
\begin{aligned}
& \sum_{d=d_{0}}^{d_{f}} \sum_{s=1}^{h} \sum_{k \in K} x_{n s d k}+N M C A G_{n d_{0}} \geq \\
& M I N C A G_{n} \cdot \sum_{s \in S} \sum_{k \in K}\left(x_{n s d_{0} k}-x_{n, s, d_{0}-1, k}\right), \\
& \forall n \in N, d_{0} \in D \backslash\{1\}, d_{0} \leq|D|-M I N C A G_{n}+1, \\
& d_{f}=d_{0}+M I N C A G_{n}-1 \\
& \sum_{s=1}^{h} \sum_{k \in K} B D_{n s k}+\sum_{s=1}^{h} \sum_{k \in K} \sum_{d=1}^{d_{f}} x_{n s d k}+N M C A G_{n, 1} \geq \\
& M I N C A G_{n} \cdot \sum_{s=1}^{h} \sum_{k \in K} x_{n, s, 1, k}, \\
& \forall n \in N, d_{f}=M I N C A G_{n}-B D_{n s k}
\end{aligned}
$$

Soft restriction 3

- Overall working days
- NMCAG: number of Missing consecutive assignments globally
- MINCAG: Minimum consecutive assignments globally

MATHEMATICAL MODEL

$$
\begin{align*}
& \sum_{d=d_{0}}^{d_{f}} \sum_{s=1}^{h} \sum_{k \in K} x_{n s d k}-N E C A G_{n d_{0}} \leq M A X C A G_{n} \tag{14}\\
& \forall n \in N, d_{0} \in D \backslash\{1\}, d_{f}=\min \left\{d_{0}+M A X C A G_{n},|D|\right\} \\
& \sum_{s=1}^{h} \sum_{k \in K} B D_{n s k}+\sum_{s=1}^{h} \sum_{k \in K} \sum_{d=1}^{d_{f}} x_{n s d k}-N E C A G_{n, 1} \leq M A X C A G_{n}, \tag{15}\\
& \forall n \in N, d_{f}=M A X C A G_{n}-B D_{n s k}+1 \\
& \Delta Z_{3}=C_{3} \cdot \sum_{n \in N} \sum_{d \in D}\left(N M C A G_{n d}+N E C A G_{n d}\right)
\end{align*}
$$

- Soft restriction 3
- NECAG: number of Extra consecutive assignments globally
- MAXCAG: number of maximum Consecutive assignments globally

MATHEMATICAL MODEL

$\Delta Z_{4}=C_{4} \cdot \sum_{n \in N} \sum_{s \in S} \sum_{d \in D} \sum_{k \in K} D S_{n s} \cdot x_{n s d k}$

$$
\begin{align*}
& \sum_{k \in K} \sum_{s=1}^{h} x_{n s d k}-M D W_{n d} \leq \sum_{k \in K} \sum_{s=1}^{h} x_{n, s, d-1, k}+\left(1-W_{n}\right), \tag{18}\\
& \forall n \in N, d \in\{7,14,21,28\}
\end{align*}
$$

$$
\begin{equation*}
M D W_{n d}+\sum_{k \in K} \sum_{s=1}^{h} x_{n s d k} \geq \sum_{k \in K} \sum_{s=1}^{h} x_{n, s, d-1, k}+\left(1-W_{n}\right) \tag{19}
\end{equation*}
$$

$$
\forall n \in N, d \in\{7,14,21,28\}
$$

$$
\begin{equation*}
\Delta Z_{5}=C_{5} \cdot \sum_{n \in N} \sum_{d \in D^{\prime}} M D W_{n d}, \quad \text { where } D^{\prime}=\{7,14,21,28\} \tag{20}
\end{equation*}
$$

Soft restriction 4

- Preferences
- DS: Desire Satisfaction level

Soft restriction 5

- Working weekends
- MDW: missing days weekend
- W : work all weekend

MATHEMATICAL MODEL

$$
\begin{align*}
& \sum_{d \in D} \sum_{s=1}^{h} \sum_{k \in K} x_{n s d k}+N M W D_{n} \geq M I N W D_{n}, \quad \forall n \in N \tag{21}\\
& \sum_{d \in D} \sum_{s=1}^{h} \sum_{k \in K} x_{n s d k}-N E W D_{n} \leq M A X W D_{n}, \quad \forall n \in N \tag{22}\\
& \Delta Z_{6}=C_{6} \cdot \sum_{n \in N}\left(N M W D_{n}+N E W D_{n}\right) \tag{23}
\end{align*}
$$

Soft restriction 6

- Working days
- NMWD: number missing working days
- MINWD: minimum working days
- NEWD: number of extra working days
- MAXWD: maximum working days

MATHEMATICAL MODEL

$$
\begin{align*}
& \sum_{s=1}^{h} \sum_{k \in K}\left(x_{n s d k}+x_{n, s, d-1, k}\right) \leq 2 \cdot W W_{n d} \tag{24}\\
& \forall n \in N, d \in\{7,14,21,28\} \\
& \sum_{s=1}^{h} \sum_{k \in K}\left(x_{n s d k}+x_{n, s, d-1, k}\right) \geq W W_{n d} \tag{25}\\
& \forall n \in N, d \in\{7,14,21,28\} \\
& \sum_{d \in D^{\prime}} W W_{n d}-N E W W_{n} \leq M A X W W_{n}, \tag{26}\\
& \forall n \in N, \text { where } D^{\prime}=\{7,14,21,28\} \\
& \Delta Z_{7}=C_{7} \cdot \sum_{n \in N} N E W W_{n} \tag{27}
\end{align*}
$$

Soft restriction 7

- Working weekends
- WW : Working weekend
- NEWW : Number of Extra working weekends
- MAXWW : Number of max working weekend

CONCLUSIONS AND FUTURE WORK

- Increasing difficulty
- Consideration of methods
- Implementation and experiments

REFERENCES

BURKE, Edmund K., CAUSMAECKER, De Patrick, Vanden BERGHE, Greet, and VAN LANDEGHEM, Hendrik. 2004. "The state of the art of nurse rostering". Journal of Scheduling, 7(6):441-499.
CESCHIA, Sara, THANH DANG, Nguyen Thi y De CAUSMAECKER, Patrick. 2014: "Second International Nurse Rostering Competition (INRC-II) — Problem Description and Rules -".

VALOUXIS, Christos., GOGOS, Christos., GOULAS, George., ALEFRAGIS, Panayiotis., HOUSOS, Efthymios. 2010. "A systematic two phase approach for the nurse rostering problem".
NONOBE, Koji. 2010. "An approach using a general constraint optimization solver".
LU, Zhipeng., HAO, Jin-Kao. 2010. "Adaptive local search for the first international nurse rostering conpetition".

BURKE, Edmund K., CURTOIS, Tim. 2010. "An ejection chain method and a branch and price algorithm applied to the instances of the first international nurse rostering competition"

