Affine term structure models: forecasting the Colombian yield curve

Mateo Velásquez-Giraldo

Mathematical Engineering EAFIT University

Diego Alexander Restrepo-Tobón

Tutor, Department of Finance EAFIT University

Research practice II: Final presentation EAFIT University, Medellín Colombia

June 9th, 2015

The term structure ●oo	ATSMs 000	Methodology	Results 000000000	Conclusions & future work	References
Interest	rates				

- Not constant!
- Vary with *time* (*t*) and *maturity* (τ).
- Higher maturities have higher expected returns.

The term structure of interest rates

- Relationship between interest rates and their maturity.
- Dynamic and (mostly) not observable.

Colombian Yield Curve

The term structure ○○●	ATSMs 000	Methodology	Results 000000000	Conclusions & future work	References
Why stu	dy the	e TS?			

Understanding the term structure can be useful for:

- Assessing risk.
- Properly discounting cashflows.
- Aiding decisions from investors and policymakers.
- Pricing derivatives.
- Extracting information about the state of the economy and the financial markets.

Affine term structure models

 Model yields over time and maturity γ_τ(t) as affine functions of a latent state vector X(t):

$$\gamma_{\tau}(t) = A(\tau) + B(\tau)^{\top} X(t)$$

$$r = \lim_{\tau \to 0} \gamma_{\tau} = \delta_0 + \delta_1^\top X(t)$$

- *X*(*t*) captures changes over **time**.
- $A(\tau)$ and $B(\tau)$ change over **maturities**.
- If *N* is the number of factors in X(t), $A(\tau) \in \mathbb{R}$ and $B(\tau) \in \mathbb{R}^{N}$.

• Under the risk-neutral measure *Q*:

$$dX(t) = \widetilde{K}\left(\widetilde{\Theta} - X(t)\right) dt + \Sigma \sqrt{S(t)} d\widetilde{W}t$$

$$[S(t)]_{i,i} = \alpha_i + \beta_i^\top X(t)$$

- The 'real' dynamics are found specifying the price of risk. We use $\Lambda(t) = \sqrt{S(t)}\lambda$, $\lambda \in \mathbb{R}^N$.
- We consider 1-3 factor models.

• $A(\tau)$ and $B(\tau)$ are obtained by solving the ODE system:

$$m{a}'(au) = -\delta_0 + m{b}(au)^{ op} \widetilde{K} \widetilde{\Theta} + rac{1}{2} \sum_{i=1}^N [m{b}(au)^{ op} \Sigma]_i^2 lpha_i$$

$$b'(au) = \delta_1 - \widetilde{K}^{ op} b(au) + \frac{1}{2} \sum_{i=1}^{N} [b(au)^{ op} \Sigma]_i^2 \beta_i$$

• $a(0) = 0, b(0) = \vec{0}, A(\tau) = -a(\tau)/\tau$ and $B(\tau) = -b(\tau)/\tau$.

• They grant consistency with the **no arbitrage hypothesis** [Duffie and Kan, 1996].

The term structure	ATSMs 000	Methodology ●○○○○○	Results 000000000	Conclusions & future work	References
Data					

- Nelson-Siegel curves published by Infovalmer.
- Time period: Aug.2002-Mar.2015
- Daily observations (3051 bursatile days).
- 2000 days used for model estimation.

The term structure	ATSMs 000	Methodology o●oooo	Results 000000000	Conclusions & future work	References oo
Notation					

We denote models as:

 $A_M(N)$

Where:

- *N* is the number of factors in the model (1, 2 or 3).
- $M \leq N$ is the number of factors which affect volatility.

- For an *N* factor model, we assume *N* yields are observed without error:
 - 1 year yield for N = 1.
 - 1 and 10 year yields for N = 2.
 - 1, 5 and 10 year yields *N* = 3.
- 3, 6 and 9 year yields are assumed to be observed with Gaussian errors for all models.

For a given set of parameters:

 The term structure
 ATSMs
 Methodology
 Results
 Conclusions & future work
 References

 The log-likelihood function II

- This methodology is proposed in [Ait-Sahalia and Kimmel, 2010].
- The state likelihood is obtained through the approximations in [Ait-Sahalia, 2008].
- Optimization is complicated. For each set of parameters:
 - Non linear restrictions are checked.
 - A system of differential equations is solved.
 - Time series of states and yields are obtained.


```
Data: # Generations:ng, Population size:np, F \in [0, 2],
       CR \in [0, 1]
P1 \leftarrow Random initial population
for i = 1 to ng do
      P0 \leftarrow P1
      for j = 1 to np do
            \{a, b, c\} \leftarrow random individuals from P0
            V \leftarrow a + F * (b - c)
            for k = 1 to \#Params do
                  if rand < CR then
                        U_k \leftarrow V_k
                  else
                        U_k \leftarrow P0(i)_k
                  end
            end
            if fobj(U) \leq PO(j) then
                  P1(i) \leftarrow U
            end
      end
end
```


Simulated state tests

Simulate a trajectory and try to obtain its parameters.

		fminsearch()		Differenti	al Evolution
Model	Loglikelihood with real params	Loglikelihood	Mean parameter relative error	Loglikelihood	Mean parameter relative error
A ₀ (1)	4049	4049	1%	4049	1%
A ₁ (1)	4967, 6	4967, 6	60348%	6.1 × 10 ²⁰	109710%
A ₀ (2)	8023	8023, 5	43%	8023, 5	43%
A ₁ (2)	6440, 5	6449, 9	82%	6449, 9	80%
A ₂ (2)	5185, 7	5185, 3	151%	5187, 3	26%
A ₀ (3)	12181	12186	213%	12186	203%
A ₁ (3)	12533	12534	228%	$1, 4 imes 10^{35}$	825%
A ₂ (3)	12885	12830	914%	12891	140%
A ₃ (3)	6951,9	6954, 6	400%	6960, 2	634%

- Identification problems.
- Enormous, wrong log-likelihoods.

The term structure	ATSMs 000	Methodology	Results o●ooooooo	Conclusions & future work	References
Estimati	on re	sults			

Three types of results were obtained:

 $A_2(2)$ and $A_3(3)$ No feasible solutions found.

 $A_1(3)$ and $A_2(3)$ Error in state-log likelihood.

 $A_0(1), A_1(1), A_0(2), A_1(2)$ and $A_0(3)$ Successful.

The term structure **ATSMs** Methodology Results Conclusions & future work References 00000000

Figure 1: $A_1(3)$ results.

The wrong state log-likelihood makes errors irrelevant.

The term structure	ATSMs 000	Methodology	Results ooo∙ooooo	Conclusions & future work	References
$A_0(1)$ m	odel				

Figure 2: $A_0(1)$ results.

The term structure	ATSMs 000	Methodology 000000	Results ○○○○●○○○○	Conclusions & future work	References
$A_{1}(1)$ m	odel				

Figure 3: $A_1(1)$ results.

The term structure	ATSMs 000	Methodology	Results ooooo●ooo	Conclusions & future work	References
$A_0(2)$ mo	odel				

Figure 4: $A_0(2)$ results.

The term structure	ATSMs 000	Methodology 000000	Results ○○○○○○●○○	Conclusions & future work	References oo
$A_{1}(2)$ m	odel				

١

Figure 5: $A_1(2)$ results.

The term structure	ATSMs 000	Methodology	Results ooooooo●o	Conclusions & future work	References
$A_0(3)$ m	odel				

Figure 6: $A_0(3)$ results.

The term structure **ATSMs** Methodology Results Conclusions & future work References 00000000

Modelling more yields with $A_0(3)$

Figure 7: $A_0(3)$ results with 7 yields observed with error.

The term structure	ATSMs 000	Methodology	Results 000000000	Conclusions & future work ●○○	References
Conclus	ions				

- An estimation procedure for five ATSM's has been implemented successfully with Colombian data.
- The A₀(3) model can represent a high number of Colombian yields very closely.
- The Colombian term structure can be adjusted to models consistent with no arbitrage.

- Find the cause of the problem with the state log-likelihood approximations.
- Test the models' forecast accuracy.
- Confidence analysis of estimated parameters.
- Applications of the models, e.g., estimation of risk premiums and derivative pricing.

The term structure	ATSMs 000	Methodology	Results 000000000	Conclusions & future work	References			
Circt foregoet requilte								

First forecast results

Figure 8: Out of sample forecasts with the $A_0(3)$ model and 5-day horizons.

The term structure	ATSMs 000	Methodology	Results 000000000	Conclusions & future work	References ●○
Referen	ces				

Ait-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. *The Annals of Statistics*, 36(2):906–937.

Ait-Sahalia, Y. and Kimmel, R. L. (2010). Estimating affine multifactor term structure models using closed-form likelihood expansions.

Journal of Financial Economics, 98(1):113-144.

Duffie, D. and Kan, R. (1996). A yield-factor model of interest rates. *Mathematical Finance*, 6(4):379–406.

The term structure	ATSMs	Methodology	Results	Conclusions & future work	References
					00

Thanks for your attention!