Ordinals and Typed Lambda Calculus

Set Theory Preliminaries

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2018-2

Notation

Conventions

- Sets will be denoted by lowercase letters (a, b, ...) and uppercase letters (A, B, ...).
- Ordinal numbers will be denoted by lowercase Greek letters $(\alpha, \beta, ...)$.
- Proper class will be denoted by upper-case sans serif letters (A, B, ...).

Set Theory Preliminaries 2/22

Classes

Definition

A class is a collection of sets.

Remark

Every set is a class, but some classes are too large to be sets.

Definition

A class A is a **set** iff $A \subseteq V_{\alpha}$ (i.e. $A \in V_{\alpha+1}$) for some ordinal number α .

Definition

A proper class is a class which is not a set.

Example

The collection of all sets is a proper class.

Set Theory Preliminaries 3/22

Classes

Remark

When introducing an axiomatic for set theory based on classes (von Neumann–Bernays–Gödel set theory), Mendelson [(1964) 2015, p. 232-3] wrote:

The sets are intended to be those safe, comfortable classes that are used by mathematicians in their daily work, whereas proper classes are thought of as monstrously large collections that, if permitted to be sets (i.e. allowed to belong to other classes), would engender contradictions.

Set Theory Preliminaries 4/22

Some Axiomatic Theories for Set Theory

- Zermelo-Fraenkel set theory (ZF)
- Zermelo-Fraenkel set theory with choice (ZFC)
- von Neumann–Bernays–Gödel set theory (NBG)
- Tarski–Grothendieck set theory (TG)

Set Theory Preliminaries 5/22

ZFC's Axioms

Non-rigorous classification

- Axioms stating the existence of sets
- Axioms determining properties of sets
- Axioms for building sets from other sets

Set Theory Preliminaries 6/22

ZFC's Axioms Stating the Existence of Sets

Empty (existence) axiom

There is a set having no members:

$$\exists B \, \forall x \, (x \not\in B).$$

Infinity axiom

There exists an inductive set:

$$\exists A \, [\, \emptyset \in A \land \forall a \, (a \in A \to \operatorname{succ} a \in A) \,],$$

where

$$\operatorname{succ} a \coloneqq a \cup \{a\}.$$

ZFC's Axioms Determining Properties of Sets

Extensionality axiom

If two sets have exactly the same members, then they are equal:

$$\forall A \forall B [\forall x (x \in A \leftrightarrow x \in B) \rightarrow A = B].$$

Regularity (foundation) axiom

All sets are well-founded:

$$\forall A \, [\, A \neq \emptyset \to \exists m \, (m \in A \land m \cap A = \emptyset) \,].$$

Set Theory Preliminaries 8/22

ZFC's Axioms for Building Sets from other Sets

Pairing axiom

For any sets u and v, there is a set having as members just u and v:

$$\forall a \, \forall b \, \exists C \, \forall x \, (x \in C \leftrightarrow x = a \lor x = b).$$

Union axiom

For any set A, there exists a set B whose elements are exactly the members of the members of A:

$$\forall A \,\exists B \,\forall x \,[\, x \in B \leftrightarrow \exists b \,(b \in A \land x \in b)\,].$$

Notation. The set B is denoted by $\bigcup A$. Note that $A \cup B = \bigcup \{A, B\}$.

Set Theory Preliminaries 9/22

ZFC's Axioms for Building Sets from other Sets

Power set axiom

For any set a, there is a set whose members are exactly the subsets of a:

$$\forall a \,\exists B \,\forall x \, (x \in B \leftrightarrow x \subseteq a).$$

Subset axiom scheme (axiom scheme of comprehension or separation)

For any propositional function $\varphi(x)$, not containing B, the following is an axiom:*

$$\forall c \,\exists B \,\forall x \, (x \in B \leftrightarrow x \in c \land \varphi(x)).$$

Axiom of choice (a version)

For any relation R there is a function $F \subseteq R$ with $\operatorname{dom} F = \operatorname{dom} R$.

^{*}The propositional function $\varphi(x)$ can depend on other variables t_1, \ldots, t_k . In this case, we use $\varphi(x, t_1, \ldots, t_k)$ and we universally quantify on variables t_1, \ldots, t_k when using the axiomatic scheme.

ZFC's Axioms for Building Sets from other Sets

Replacement axiom scheme

For any propositional function $\varphi(x,y)$, not containing B, the following is an axiom:*

$$\forall A \left[\forall x (x \in A \to \exists ! y \, \varphi(x, y)) \to \\ \exists B \, \forall y (y \in B \leftrightarrow \exists x \, (x \in A \land \varphi(x, y))) \right].$$

That is, the replacement axiom scheme asserts that

$$B = \{ y \mid \exists x (x \in A \land \varphi(x, y)) \}$$
 is a set.

^{*}The propositional function $\varphi(x,y)$ can depend on other variables t_1,\ldots,t_k . In this case, we use $\varphi(x,y,t_1,\ldots,t_k)$ and we universally quantify on variables t_1,\ldots,t_k when using the axiomatic scheme.

Remark

Ordering relations can be interchangeably defined from non-strict (\preceq) or strict (\prec) orderings.

Set Theory Preliminaries 12/22

Definition

A binary relation \leq on a set A is a **partial non-strict ordering** iff it satisfies the following properties:

$$\forall x \, (x \leq x) \qquad \qquad \text{(reflexivity)}$$

$$\forall x \, \forall y \, (x \leq y \leq x \rightarrow x = y) \qquad \qquad \text{(anti-symmetry)}$$

$$\forall x \, \forall y \, \forall z \, (x \leq y \leq z \rightarrow x \leq z) \qquad \qquad \text{(transitivity)}$$

The pair (A, \preceq) is a **partially ordered set** (or **poset**).

Set Theory Preliminaries 13/22

Definition

A binary relation \prec on a set A is a **partial strict ordering** iff it satisfies the following properties:

$$\forall x \, (\neg(x \prec x)) \qquad \qquad \text{(irreflexivity)}$$

$$\forall x \, \forall y \, \forall z \, (x \prec y \prec z \rightarrow x \prec z) \qquad \qquad \text{(transitivity)}$$

Set Theory Preliminaries 14/22

Theorem

Relationship between partial non-strict orderings and partial strict orderings:*

• Let \leq be a partial non-strict ordering on a set A. The relation

$$a \prec b \coloneqq a \leq b \text{ and } a \neq b$$

is a partial strict ordering on A.

ullet Let \prec be a partial strict ordering on a set A. The relation

$$a \leq b \coloneqq a \prec b \text{ or } a = b$$

is a partial non-strict ordering on A.

Set Theory Preliminaries 15/22

^{*}See, e.g. [Hrbacek and Jech (1978) 1999, Ch. 2, Theorem 5.6].

Definition

A binary relation \leq on a set A is a **total non-strict ordering** iff it satisfies the following properties:

$$\forall x \, (x \preceq x) \qquad \qquad \text{(reflexivity)}$$

$$\forall x \, \forall y \, (x \preceq y \preceq x \rightarrow x = y) \qquad \qquad \text{(anti-symmetry)}$$

$$\forall x \, \forall y \, \forall z \, (x \preceq y \preceq z \rightarrow x \preceq z) \qquad \qquad \text{(transitivity)}$$

$$\forall x \, \forall y \, (x \preceq y \vee y \preceq x) \qquad \qquad \text{(connexity or totality)}$$

The pair (A, \preceq) is a **totally ordered set**.

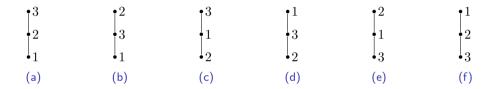
Remark

The connexity (totality) property implies reflexivity.

Set Theory Preliminaries 16/22

Example

Let's define all the total non-strict ordering on the set $\{1, 2, 3\}$.



Set Theory Preliminaries 17/22

Definition

A binary relation \prec on a set A is a **total strict ordering** iff it satisfies the following properties:

$$\forall x \, (\neg(x \prec x)) \qquad \qquad \text{(irreflexivity)}$$

$$\forall x \, \forall y \, \forall z \, (x \prec y \prec z \rightarrow x \prec z) \qquad \qquad \text{(transitivity)}$$

$$\forall x \, \forall y \, (x \neq y \rightarrow x \prec y \lor y \prec x) \qquad \qquad \text{(connexity or totality)}$$

Set Theory Preliminaries 18/22

Definition

A total strict ordering \prec on a set A is a **well-ordering** iff every non-empty subset of A has a least (minimum) element.

Set Theory Preliminaries 19/22

Definition

A total strict ordering \prec on a set A is a **well-ordering** iff every non-empty subset of A has a least (minimum) element.

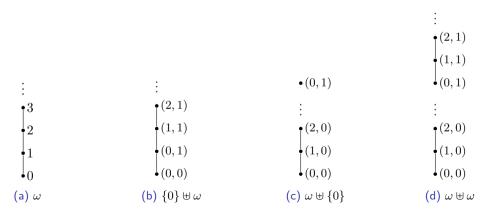
Example

Let's define some well-orderings on the set $\{a,b,c,d\}$. See whiteboard.

Set Theory Preliminaries 20/22

Example

Some denumerable well-orderings where \uplus denotes the disjoint union of sets, i.e. $A \uplus B := (A \times \{0\}) \cup (B \times \{1\})$.



Set Theory Preliminaries 21/22

References

Hrbacek, Karel and Jech, Thomas [1978] (1999). Introduction to Set Theory. Third Edition, Revised and Expanded. Marcel Dekker (cit. on p. 15).

Mendelson, Elliott [1964] (2015). Introduction to Mathematical Logic. 6th ed. CRC Press (cit. on p. 4).

Set Theory Preliminaries 22/22