Ordinals and Typed Lambda Calculus Ordinal Notations

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2018-2

Too many numbers to be named

Spector [1955] starts by pointing out that

Cantor's second ordinal number class is perhaps the simplest example of a set of mathematical objects which cannot all be named in one language.

Remark

Recall that a language is a subset of words over an alphabet.

Remark

Recall that a language is a subset of words over an alphabet.

Question

Can all natural numbers be named in one language?

Remark

Recall that a language is a subset of words over an alphabet.

Question

Can all natural numbers be named in one language?

Yes! We can name any natural number by a word over the alphabet $\{0, 1, 2, \dots, 9\}$.

Remark

Recall that a language is a subset of words over an alphabet.

Question

Can all natural numbers be named in one language?

Yes! We can name any natural number by a word over the alphabet $\{0, 1, 2, \dots, 9\}$.

That was easy because the set of natural numbers is denumerable.

Question

Can all real numbers be named in one language?

Theorem

Every ordinal α less than ϵ_0 has a normal form

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n},$$

where $\beta_1 \ge \beta_2 \ge \cdots \ge \beta_n$ are ordinals and $\beta_i < \alpha$ [Pohlers 2009, p. 33].

Theorem

Every ordinal α less than ϵ_0 has a normal form

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n},$$

where $\beta_1 \ge \beta_2 \ge \cdots \ge \beta_n$ are ordinals and $\beta_i < \alpha$ [Pohlers 2009, p. 33].

Definition

From the above theorem, we can name any ordinal less than ϵ_0 by a word over the alphabet $\{+, 0, \omega^{\cdot}\}$. By coding these words in natural numbers, we get a **notation system for the ordinals below** ϵ_0 [Pohlers 2009, p. 33].

Theorem

Every ordinal α less than ϵ_0 has a normal form

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n},$$

where $\beta_1 \ge \beta_2 \ge \cdots \ge \beta_n$ are ordinals and $\beta_i < \alpha$ [Pohlers 2009, p. 33].

Definition

From the above theorem, we can name any ordinal less than ϵ_0 by a word over the alphabet $\{+, 0, \omega^{\cdot}\}$. By coding these words in natural numbers, we get a **notation system for the ordinals below** ϵ_0 [Pohlers 2009, p. 33].

Remark

The ordinal ϵ_0 is the smallest ordinal that has no a name in terms of ω .

Representation using trees

We can also represent ordinals below ϵ_0 using finite (ordered) trees.

Representation using trees

We can also represent ordinals below ϵ_0 using finite (ordered) trees.

Theorem

There is a one-to-one correspondence between finite rooted trees and ordinals below ϵ_0 given by [Dershowitz 1993]:

- i) The one-node tree represents the ordinal 0.
- ii) The tree with sub-trees representing the ordinals $\alpha_1, \ldots, \alpha_n$ represents the ordinal $\omega^{\alpha_1} \# \cdots \# \omega^{\alpha_n}$.

Theorem

There is a one-to-one correspondence between finite ordered rooted trees and ordinals below ϵ_0 given by [Dershowitz 1993]:

- i) The one-node ordered tree represents the ordinal 0.
- ii) The ordered tree with ordered sub-trees representing the ordinals $\alpha_1 \geq \cdots \geq \alpha_n$ represents the ordinal $\omega^{\alpha_1} + \cdots + \omega^{\alpha_n}$.

Definition

We inductively define the **notation system** O and the **well-founded ordering** $<_O$ [Cooper 2004, Definition 16.2.29, p. 358]:

i) We start by giving the ordinal 0 notation 1. Assume all ordinals less than α have been assigned notations, and $<_{\mathcal{O}}$ has been defined on these notations.

ii) Say $\alpha = \beta + 1$, and β has notation x.

Then α gets notation 2^x and we add $\langle z, 2^x \rangle$ to $<_{\mathcal{O}}$ for each z such that z = x or $z <_{\mathcal{O}} x$ already.

iii) Say α is a limit ordinal, and $\langle \varphi_e(n) : n \in \mathbb{N} \rangle$ is a list of notations for ordinals with limit α , and $\forall n[\varphi_e(n) <_{\mathcal{O}} \varphi_e(n+1)]$ already.

Then give α notation $3 \cdot 5^e$, and add $\langle z, 3 \cdot 5^e \rangle$ to $\langle_{\mathcal{O}}$ for all z for which $z \langle_{\mathcal{O}} \varphi_e(n)$ already, some $n \geq 0$.

Kleene's \mathcal{O}

Remark

We could use the notations zero, $\operatorname{succ}(x)$ and $\lim(e)$ instead of the notations $1, 2^x$ and $3 \cdot 5^e$.*

^{*}See, e.g. [Fránzen (2004) 2017].

Constructive Ordinals and Computable Ordinals

Definition

The **constructive ordinals** (second definition) are the ordinals notated by O [Cooper 2004, Definition 16.2.29, p. 358].

*See, e.g. [Cooper 2004, Definition 16.2.25, p. 358], [Rogers (1967) 1992, p. 211] and [Ash and Knight 2000, p. 61].

Ordinal Notations

Definition

The **constructive ordinals** (second definition) are the ordinals notated by O [Cooper 2004, Definition 16.2.29, p. 358].

Definition

A countable ordinal is **computable** iff it is finite or it is isomorphic to a computable well-ordering $(A,\prec).^*$

*See, e.g. [Cooper 2004, Definition 16.2.25, p. 358], [Rogers (1967) 1992, p. 211] and [Ash and Knight 2000, p. 61].

Constructive Ordinals and Computable Ordinals

Theorem

An ordinal α is constructive iff α is a computable ordinal.*

*See, e.g. [Rogers (1967) 1992, Corollary XIX and Theorem XX, p. 211] and [Ash and Knight 2000, § 4.7, p. 62].

References

- Ash, C. J. and Knight, J. (2000). Computable Structures and the Hyperarithmetical Hierarchy. Vol. 144. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on pp. 16–18).
 - Cooper, S. Barry (2004). Computability Theory. Chapman & Hall (cit. on pp. 14, 16, 17).
 - Dershowitz, Nachum (1993). Trees, Ordinals and Termination. In: Theory and Practice of Software Development (TAPSOFT'93). Ed. by Gaudel, Marie-Claude and Jouannaud, Jean-Pierre. Vol. 668. Lecture Notes in Computer Science. Springer, pp. 243–250. DOI: 10.1007/3-540-56610-4_68 (cit. on pp. 11–13).
 - Fránzen, Torkel [2004] (2017). Inexhaustibility. A Non-Exhaustive Treatment. Vol. 16. Lecture Notes in Logic. Association for Symbolic Logic and Cambridge University Press. DOI: 10.1017/9781316755969 (cit. on p. 15).

Pohlers, Wolfram (2009). Proof Theory. The First Step into Impredicativity. Springer. DOI: 10. 1007/978-3-540-69319-2 (cit. on pp. 8–10).

- Rogers, Hartley [1967] (1992). Theory of Recursive Functions and Effective Computability. Third printing. MIT Press (cit. on pp. 16–18).
- Spector, Clifford (1955). Recursive Well-Orderings. The Journal of Symbolic Logic 20.2, pp. 151–163. DOI: 10.2307/2266902 (cit. on p. 2).