Ordinals and Typed Lambda Calculus

Ordinal Notations

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2018-2

Introduction

Too many numbers to be named
Spector [1955] starts by pointing out that
Cantor's second ordinal number class is perhaps the simplest example of a set of mathematical objects which cannot all be named in one language.

Introduction

Remark

Recall that a language is a subset of words over an alphabet.

Introduction

Remark

Recall that a language is a subset of words over an alphabet.

Question
Can all natural numbers be named in one language?

Introduction

Remark

Recall that a language is a subset of words over an alphabet.

Question

Can all natural numbers be named in one language?
Yes! We can name any natural number by a word over the alphabet $\{0,1,2, \ldots, 9\}$.

Introduction

Remark

Recall that a language is a subset of words over an alphabet.

Question

Can all natural numbers be named in one language?
Yes! We can name any natural number by a word over the alphabet $\{0,1,2, \ldots, 9\}$.
That was easy because the set of natural numbers is denumerable.

Introduction

Question

Can all real numbers be named in one language?

Notation Systems for the Ordinals below ϵ_{0}

Theorem

Every ordinal α less than ϵ_{0} has a normal form

$$
\alpha=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\cdots+\omega^{\beta_{n}}
$$

where $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$ are ordinals and $\beta_{i}<\alpha$ [Pohlers 2009, p. 33].

Notation Systems for the Ordinals below ϵ_{0}

Theorem

Every ordinal α less than ϵ_{0} has a normal form

$$
\alpha=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\cdots+\omega^{\beta_{n}}
$$

where $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$ are ordinals and $\beta_{i}<\alpha$ [Pohlers 2009, p. 33].

Definition

From the above theorem, we can name any ordinal less than ϵ_{0} by a word over the alphabet $\{+, 0, \omega \cdot\}$. By coding these words in natural numbers, we get a notation system for the ordinals below $\boldsymbol{\epsilon}_{\boldsymbol{0}}$ [Pohlers 2009, p. 33].

Notation Systems for the Ordinals below ϵ_{0}

Theorem

Every ordinal α less than ϵ_{0} has a normal form

$$
\alpha=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\cdots+\omega^{\beta_{n}}
$$

where $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$ are ordinals and $\beta_{i}<\alpha$ [Pohlers 2009, p. 33].

Definition

From the above theorem, we can name any ordinal less than ϵ_{0} by a word over the alphabet $\{+, 0, \omega \cdot\}$. By coding these words in natural numbers, we get a notation system for the ordinals below $\boldsymbol{\epsilon}_{\mathbf{0}}$ [Pohlers 2009, p. 33].

Remark

The ordinal ϵ_{0} is the smallest ordinal that has no a name in terms of ω.

Notation Systems for the Ordinals below ϵ_{0}
Representation using trees
We can also represent ordinals below ϵ_{0} using finite (ordered) trees.

Notation Systems for the Ordinals below ϵ_{0}

Representation using trees
We can also represent ordinals below ϵ_{0} using finite (ordered) trees.

Theorem

There is a one-to-one correspondence between finite rooted trees and ordinals below ϵ_{0} given by [Dershowitz 1993]:
i) The one-node tree represents the ordinal 0 .
ii) The tree with sub-trees representing the ordinals $\alpha_{1}, \ldots, \alpha_{n}$ represents the ordinal $\omega^{\alpha_{1}} \# \cdots \# \omega^{\alpha_{n}}$.

Notation Systems for the Ordinals below ϵ_{0}

Theorem

There is a one-to-one correspondence between finite ordered rooted trees and ordinals below ϵ_{0} given by [Dershowitz 1993]:
i) The one-node ordered tree represents the ordinal 0 .
ii) The ordered tree with ordered sub-trees representing the ordinals $\alpha_{1} \geq \cdots \geq \alpha_{n}$ represents the ordinal $\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}$.

Kleene's \mathcal{O}

Definition

We inductively define the notation system \mathcal{O} and the well-founded ordering $<_{\mathcal{O}}$ [Cooper 2004, Definition 16.2.29, p. 358]:
i) We start by giving the ordinal 0 notation 1. Assume all ordinals less than α have been assigned notations, and $<_{\mathcal{O}}$ has been defined on these notations.
ii) Say $\alpha=\beta+1$, and β has notation x.

Then α gets notation 2^{x} and we add $\left\langle z, 2^{x}\right\rangle$ to $<_{\mathcal{O}}$ for each z such that $z=x$ or $z<_{\mathcal{O}} x$ already.
iii) Say α is a limit ordinal, and $\left\langle\varphi_{e}(n): n \in \mathbb{N}\right\rangle$ is a list of notations for ordinals with limit α, and $\forall n\left[\varphi_{e}(n)<_{\mathcal{O}} \varphi_{e}(n+1)\right]$ already.

Then give α notation $3 \cdot 5^{e}$, and add $\left\langle z, 3 \cdot 5^{e}\right\rangle$ to $<_{\mathcal{O}}$ for all z for which $z<_{\mathcal{O}} \varphi_{e}(n)$ already, some $n \geq 0$.

Kleene's \mathcal{O}

Remark

We could use the notations zero, $\operatorname{succ}(x)$ and $\lim (e)$ instead of the notations $1,2^{x}$ and $3 \cdot 5^{e}$.*

[^0]
Constructive Ordinals and Computable Ordinals

Definition

The constructive ordinals (second definition) are the ordinals notated by \mathcal{O} [Cooper 2004, Definition 16.2.29, p. 358].
*See, e.g. [Cooper 2004, Definition 16.2.25, p. 358], [Rogers (1967) 1992, p. 211] and [Ash and Knight 2000, p. 61].

Constructive Ordinals and Computable Ordinals

Definition

The constructive ordinals (second definition) are the ordinals notated by \mathcal{O} [Cooper 2004, Definition 16.2.29, p. 358].

Definition

A countable ordinal is computable iff it is finite or it is isomorphic to a computable wellordering (A, \prec).*

[^1]
Constructive Ordinals and Computable Ordinals

Theorem

An ordinal α is constructive iff α is a computable ordinal.*
*See, e.g. [Rogers (1967) 1992, Corollary XIX and Theorem XX, p. 211] and [Ash and Knight 2000, § 4.7, p. 62].

References

Ash, C. J. and Knight, J. (2000). Computable Structures and the Hyperarithmetical Hierarchy. Vol. 144. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on pp. 16-18).
Cooper, S. Barry (2004). Computability Theory. Chapman \& Hall (cit. on pp. 14, 16, 17).
Dershowitz, Nachum (1993). Trees, Ordinals and Termination. In: Theory and Practice of Software Development (TAPSOFT'93). Ed. by Gaudel, Marie-Claude and Jouannaud, Jean-Pierre. Vol. 668. Lecture Notes in Computer Science. Springer, pp. 243-250. DOI: 10. 1007/3-540-56610-4_68 (cit. on pp. 11-13).
Fránzen, Torkel [2004] (2017). Inexhaustibility. A Non-Exhaustive Treatment. Vol. 16. Lecture Notes in Logic. Association for Symbolic Logic and Cambridge University Press. DOI: 10. 1017/ 9781316755969 (cit. on p. 15).
Pohlers, Wolfram (2009). Proof Theory. The First Step into Impredicativity. Springer. DOI: 10. 1007/978-3-540-69319-2 (cit. on pp. 8-10).
Rogers, Hartley [1967] (1992). Theory of Recursive Functions and Effective Computability. Third printing. MIT Press (cit. on pp. 16-18).
Spector, Clifford (1955). Recursive Well-Orderings. The Journal of Symbolic Logic 20.2, pp. 151163. DOI: $10.2307 / 2266902$ (cit. on p. 2).

[^0]: *See, e.g. [Fránzen (2004) 2017].

[^1]: *See, e.g. [Cooper 2004, Definition 16.2.25, p. 358], [Rogers (1967) 1992, p. 211] and [Ash and Knight 2000, p. 61].

