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Introduction
Too many numbers to be named
Spector [1955] starts by pointing out that

Cantor’s second ordinal number class is perhaps the simplest example of a set of
mathematical objects which cannot all be named in one language.
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Introduction
Remark
Recall that a language is a subset of words over an alphabet.

Question
Can all natural numbers be named in one language?

Yes! We can name any natural number by a word over the alphabet {0, 1, 2, . . . , 9}.

That was easy because the set of natural numbers is denumerable.
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Introduction
Question
Can all real numbers be named in one language?
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Notation Systems for the Ordinals below ϵ0

Theorem
Every ordinal α less than ϵ0 has a normal form

α = ωβ1 + ωβ2 + · · · + ωβn ,

where β1 ≥ β2 ≥ · · · ≥ βn are ordinals and βi < α [Pohlers 2009, p. 33].

Definition
From the above theorem, we can name any ordinal less than ϵ0 by a word over the alphabet
{+, 0, ω.}. By coding these words in natural numbers, we get a notation system for the
ordinals below ϵ0 [Pohlers 2009, p. 33].

Remark
The ordinal ϵ0 is the smallest ordinal that has no a name in terms of ω.
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Notation Systems for the Ordinals below ϵ0

Representation using trees
We can also represent ordinals below ϵ0 using finite (ordered) trees.

Theorem
There is a one-to-one correspondence between finite rooted trees and ordinals below ϵ0 given
by [Dershowitz 1993]:

i) The one-node tree represents the ordinal 0.
ii) The tree with sub-trees representing the ordinals α1, . . . , αn represents the ordinal

ωα1 # · · · # ωαn .
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Notation Systems for the Ordinals below ϵ0

Theorem
There is a one-to-one correspondence between finite ordered rooted trees and ordinals below ϵ0
given by [Dershowitz 1993]:

i) The one-node ordered tree represents the ordinal 0.
ii) The ordered tree with ordered sub-trees representing the ordinals α1 ≥ · · · ≥ αn

represents the ordinal ωα1 + · · · + ωαn .
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Kleene’s O
Definition
We inductively define the notation system O and the well-founded ordering <O [Cooper
2004, Definition 16.2.29, p. 358]:

i) We start by giving the ordinal 0 notation 1. Assume all ordinals less than α
have been assigned notations, and <O has been defined on these notations.

ii) Say α = β + 1, and β has notation x.

Then α gets notation 2x and we add ⟨z, 2x⟩ to <O for each z such that z = x
or z <O x already.

iii) Say α is a limit ordinal, and ⟨φe(n) : n ∈ N⟩ is a list of notations for ordinals
with limit α, and ∀n[φe(n) <O φe(n + 1)] already.

Then give α notation 3 · 5e, and add ⟨z, 3 · 5e⟩ to <O for all z for which
z <O φe(n) already, some n ≥ 0.
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Kleene’s O
Remark
We could use the notations zero, succ(x) and lim(e) instead of the notations 1, 2x and 3 · 5e.∗

∗See, e.g. [Fránzen (2004) 2017].
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Constructive Ordinals and Computable Ordinals
Definition
The constructive ordinals (second definition) are the ordinals notated by O [Cooper 2004,
Definition 16.2.29, p. 358].

Definition
A countable ordinal is computable iff it is finite or it is isomorphic to a computable well-
ordering (A, ≺).∗

∗See, e.g. [Cooper 2004, Definition 16.2.25, p. 358], [Rogers (1967) 1992, p. 211] and [Ash and Knight
2000, p. 61].
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Constructive Ordinals and Computable Ordinals
Theorem
An ordinal α is constructive iff α is a computable ordinal.∗

∗See, e.g. [Rogers (1967) 1992, Corollary XIX and Theorem XX, p. 211] and [Ash and Knight 2000, § 4.7,
p. 62].
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