
Ordinals and Typed Lambda Calculus
Lambda Calculus

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2018-2

Introduction

Alonzo Church (1903 – 1995)∗

∗Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics.
Lambda Calculus 2/33

https://history-computer.com/ModernComputer/thinkers/Church.html
https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html

Introduction
Some remarks

A formal system invented by Church around 1930s.
The goal was to use the λ-calculus in the foundation of mathematics.
Intended for studying functions and recursion.
Computability model.
A free-type functional programming language.
λ-notation (e.g. anonymous functions and currying).

Lambda Calculus 3/33

Application, Abstraction and Curryfication
Application
Application of the function M to argument N is denoted by M N (juxtaposition).

Abstraction
‘If M is any formula containing the variable x, then λx[M] is a symbol for the function whose
values are those given by the formula.’ [Church 1932, p. 352]

Curryfication
‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function of one
variable whose values are functions of one variable, and a function of three or more variables
similarly.’ [Church 1932, p. 352]

Lambda Calculus 4/33

Application, Abstraction and Curryfication
Application
Application of the function M to argument N is denoted by M N (juxtaposition).

Abstraction
‘If M is any formula containing the variable x, then λx[M] is a symbol for the function whose
values are those given by the formula.’ [Church 1932, p. 352]

Curryfication
‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function of one
variable whose values are functions of one variable, and a function of three or more variables
similarly.’ [Church 1932, p. 352]

Lambda Calculus 5/33

Application, Abstraction and Curryfication
Application
Application of the function M to argument N is denoted by M N (juxtaposition).

Abstraction
‘If M is any formula containing the variable x, then λx[M] is a symbol for the function whose
values are those given by the formula.’ [Church 1932, p. 352]

Curryfication
‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function of one
variable whose values are functions of one variable, and a function of three or more variables
similarly.’ [Church 1932, p. 352]

Lambda Calculus 6/33

Lambda Terms
Definition
Let V be a denumerable set of variables. The set of λ-terms, denoted by Λ, is inductively
defined by

x ∈ V ⇒ x ∈ Λ (variable)
M, N ∈ Λ ⇒ (M N) ∈ Λ (application)

M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ (λ-abstraction)

Lambda Calculus 7/33

Lambda Terms
Remark
Usually, the set of λ-terms Λ is defined by the abstract grammar∗

Λ ∋ t ::= x (variable)
| t t (application)
| λx.t (λ-abstraction)

∗See, e.g. [Pierce 2002].
Lambda Calculus 8/33

Lambda Terms
Notation
The symbol ‘≡’ denotes the syntactic identity.

Conventions
λ-term variables will be denoted by x, y, z,
λ-terms will be denoted by M, N, P, Q,

Lambda Calculus 9/33

Lambda Terms
Conventions and syntactic sugar

Outermost parentheses are not written.
Application has higher precedence, that is,

λ x. M N := (λ x. (M N)).

Application associates to the left, that is,

M N1 N2 . . . Nk := (. . . ((M N1) N2) . . . Nk).

Lambda abstraction associates to the right, that is,

λ x1 x2 . . . xn. M := λ x1. λ x2. . . . λ xn. M

:= (λ x1. (λ x2. (. . . (λxn.M) . . .))).

Lambda Calculus 10/33

Lambda Terms
Example
Using the conventions and syntactic sugar.

(λ x y z. x z (y z)) u v w

≡ (λ x y z. (x z) (y z)) u v w (left-associative application)
≡ ((λ x y z. (x z) (y z)) u) v w (left-associative application)
≡ (((λ x y z. (x z) (y z)) u) v) w (left-associative application)
≡ (((λ x y z. ((x z) (y z))) u) v) w (application higher precedence)
≡ (((λ x. λ y. λ z. ((x z) (y z))) u) v) w (right-associative λ-abstraction)
≡ (((λ x. λ y. (λ z. ((x z) (y z)))) u) v) w (right-associative λ-abstraction)
≡ (((λ x. (λ y. (λ z. ((x z) (y z))))) u) v) w (right-associative λ-abstraction)
≡ ((((λ x. (λ y. (λ z. ((x z) (y z))))) u) v) w) (remove outermost parentheses)

Lambda Calculus 11/33

Binding
Definition
A variable x occurs free in M if x is not in the scope of λx. Otherwise, x occurs bound.

Definition
The set of free variables in M , denoted by FV(M), is inductively defined by

FV(x) := {x},

FV(M N) := FV(M) ∪ FV(N),
FV(λx.M) := FV(M) − {x}.

Lambda Calculus 12/33

Substitution
Definition
The result of substituting N for every free occurrence of x in M , and changing bound
variables to avoid clashes, denoted by M [x 7→ N], is defined by [Hindley and Seldin 2008,
Definition 1.12]

x[x 7→ N] := N ;
y[x 7→ N] := y, if y ̸≡ x;

(P Q)[x 7→ N] := P [x 7→ N] Q[x 7→ N];
(λx.P)[x 7→ N] := λx.P ;
(λy.P)[x 7→ N] := λy.P, if y ̸≡ x and x ̸∈ FV(P);
(λy.P)[x 7→ N] := λy.P [x 7→ N], if y ̸≡ x, x ∈ FV(P) and y ̸∈ FV(N);
(λy.P)[x 7→ N] := λz.P [x 7→ N][y 7→ z], if y ̸≡ x, x ∈ FV(P) and y ∈ FV(N);

where in the last equation, the variable z is chosen such that z ̸∈ FV(N P).

Lambda Calculus 13/33

Substitution
Example
(y (λ v. x v))[x 7→ (λ y. v y)] ≡ y (λ z. (λ y. v y) z) (with z ̸≡ v, y, x).

Lambda Calculus 14/33

Conversion Rules
Introduction
The functional behaviour of the λ-calculus is formalised through of their conversion rules:

λx.N =α λy.(N [x 7→ y]) (α-conversion)

(λx.M) N =β M [x 7→ N] (β-conversion)

λ x. M x =η M (η-conversion)

Lambda Calculus 15/33

Alpha Congruence
Definition
A changed of bound variables in M is to replace a subterm λx.N of M by λy.(N [x 7→ y])
where y does not occur in N .

Definition
A λ-term M is α-congruent with N , denoted by M ≡α N , iff N results from M by a finite
(perhaps empty) series of changes of bound variables.

Example
Whiteboard.

Lambda Calculus 16/33

Alpha Congruence
Theorem
The relation ≡α is an equivalence relation.∗

Convention
Following Barendregt [(1981) 2004, Convention 2.1.12], we syntactically identified λ-terms that
are α-congruent, that is,

M ≡ N := M ≡α N.

∗See, e.g. [Hindley and Seldin 2008, Lemma 1.19b].
Lambda Calculus 17/33

Compatible Relations
Definition
A binary relation R on Λ is compatible iff ∗

(M, N) ∈ R ⇒

(P M, P N) ∈ R,

(M P, N P) ∈ R,

(λx.M, λx.N) ∈ R.

∗See, e.g. [Barendregt (1981) 2004, Definition 3.1.1i].
Lambda Calculus 18/33

Beta Reduction
Definition
The binary relation β on Λ is defined by

β := { ((λx.M) N, M [x 7→ N]) | M, N ∈ Λ }.

Lambda Calculus 19/33

Beta Reduction
Definition
The binary relation one step β-reduction on Λ, denoted by →β, is the compatible closure
of β.

The →β relation can be inductively defined by∗

(M, N) ∈ β

M →β N

M →β N

P M →β P N

M →β N

M P →β N P

M →β N

λx.M →β λx.N

∗See, e.g. [Barendregt (1981) 2004, Definition 3.1.5].
Lambda Calculus 20/33

Beta Reduction
Definition
The binary relation β-reduction on Λ, denoted by ↠β, is the reflexive and transitive closure
of →β.

The ↠β relation can be inductively defined by∗

M →β N

M ↠β N

M ↠β M

M ↠β N N ↠β P

M ↠β P

∗See, e.g. [Barendregt (1981) 2004, Definition 3.1.5].
Lambda Calculus 21/33

Beta Equality or Beta Convertibility
Definition
The binary relation β-equality (or β-convertibility) on Λ, denoted by =β, is the equivalence
relation generated by ↠β.

The =β relation can be inductively defined by∗

M ↠β N

M =β N

M =β N

N =β M

M =β N N =β P

M =β P

∗See, e.g. [Barendregt (1981) 2004, Definition 3.1.5].
Lambda Calculus 22/33

Normal Forms
Definition
A β-redex is a λ-term of the form (λx.M) N .

Definition
A λ-term which contains no β-redex is in β-normal form (β-nf).

Definition
A λ-term N is a β-nf of M (or M has the β-nf M) iff N is a β-nf and M =β N .

Example
Whiteboard.

Lambda Calculus 23/33

Normal Forms
Remark
Church [1935, 1936] proved that the set

{ M ∈ Λ | M has a β-normal form }

is not computable∗ (i.e. undecidable). This was the first undecidable set ever.†

∗We use the term ‘computable’ rather than ‘recursive’ following to [Soare 1996].
†See also [Barendregt 1990].

Lambda Calculus 24/33

Combinators
Definition
A combinator (or closed λ-term) is a λ-term without free variables.

Convention
A combinator called for example pred will be denoted by pred.

Lambda Calculus 25/33

Combinators
Example
Some common combinators.

B := λ f g x. f (g x) (a composition combinator)
B′ := λ f g x. g (f x) (a reversed composition combinator)
C := λ x y z. x z y (a permuting combinator)
I := λx.x (an identity combinator)

K := λ x y. x (a projection combinator)
M := λ x. x x (a doubling combinator)
S := λ f g x. f x (g x) (a stronger composition combinator)
T := λ x y. y x (a permuting combinator)
V := λ x y z. z y x (a permuting combinator)
W := λ f x. f x x (a doubling combinator)

Lambda Calculus 26/33

Combinators
Remark
The programs in a programming language based on λ-calculus are combinators.

Remark
The combinators K and S (i.e. the combinatory logic) are a Turing-complete language.

Lambda Calculus 27/33

Fixed-Point Combinators
Definition
A fixed-point combinator is any combinator fix such that for all terms M ,

fix M =β M (fix M).

Theorem
The combinator Y := λ f. V V , where V ≡ λ x. f (x x), is a fixed-point combinator.∗

Theorem
The combinator U U, where U := λ u x. x (u u x), is a fixed-point combinator.†

∗According to [Hindley and Seldin 2008, p. 36], this combinator was hinted by Curry in 1929 and first
published by Rosenbloom [1950]. See also [Barendregt (1981) 2004, Corollary 6.1.3].

†Defined by Turing [1937]. See, also [Barendregt (1981) 2004, Definition 6.1.4].
Lambda Calculus 28/33

Recursion Using Fixed-Points
Example
An informal example using the factorial function [Peyton Jones 1987, § 2.4.1].

fac := λ n. if (n == 0) then 1 else n ∗ fac (n − 1) (combinator)
≡ λ n. (. . . fac . . .) (recursive combinator)
≡ (λ f. λ n. (. . . f . . .)) fac (λ-abstraction on fac)

Now, we can redefine the factorial function using fix.

h := λ f. λ n. (. . . f . . .) (non-recursive combinator)

fac := fix h (fac is a fixed-point of h)

(continued on next slide)

Lambda Calculus 29/33

Recursion Using Fixed-Points
Example
An informal example using the factorial function [Peyton Jones 1987, § 2.4.1].

fac := λ n. if (n == 0) then 1 else n ∗ fac (n − 1) (combinator)
≡ λ n. (. . . fac . . .) (recursive combinator)
≡ (λ f. λ n. (. . . f . . .)) fac (λ-abstraction on fac)

Now, we can redefine the factorial function using fix.

h := λ f. λ n. (. . . f . . .) (non-recursive combinator)

fac := fix h (fac is a fixed-point of h)

(continued on next slide)

Lambda Calculus 30/33

Recursion Using Fixed-Points
Example (continuation)

fac 1 ≡ fix h 1
=β h (fix h) 1
≡ (λ f. λ n. (. . . f . . .)) (fix h) 1
↠β if (1 == 0) then 1 else 1 ∗ (fix h 0)
↠β 1 ∗ (fix h 0)
=β 1 ∗ (h(fix h) 0)
≡ 1 ∗ ((λ f. λ n. (. . . f . . .)) (fix h) 0)
↠β 1 ∗ (if (0 == 0) then 1 else 1 ∗ (fix h (−1)))
↠β 1 ∗ 1
↠β 1

Lambda Calculus 31/33

References
Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition,
6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on
pp. 17, 18, 20–22, 28).
Barendregt, Henk (1990). Functional Programming and Lambda Calculus. In: Handbook of The-
oretical Computer Science. Ed. by van Leeuwen, J. Vol. B. Formal Models and Semantics. MIT
Press. Chap. 7. doi: 10.1016/B978-0-444-88074-1.50012-3 (cit. on p. 24).
Church, Alonzo (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics
33.2, pp. 346–366. doi: 10.2307/1968337 (cit. on pp. 4–6).
— (1935). An Unsolvable Problem of Elementary Number Theory. Preliminar Report (Abstract).
Bulletin of the American Mathematical Society 41.5, pp. 332–333. doi: 10.1090/S0002-9904-
1935-06102-6 (cit. on p. 24).
— (1936). An Unsolvable Problem of Elementary Number Theory. American Journal of Math-
ematics 58.2, pp. 345–363. doi: 10.2307/2371045 (cit. on p. 24).
Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An Intro-
duction. Cambridge University Press (cit. on pp. 13, 17, 28).

Lambda Calculus 32/33

https://doi.org/10.1016/B978-0-444-88074-1.50012-3
https://doi.org/10.2307/1968337
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.2307/2371045

References
Peyton Jones, Simon L. (1987). The Implementation of Functional Programming Languages. Series
in Computer Sciences. Prentice-Hall International (cit. on pp. 29, 30).
Pierce, Benjamin C. (2002). Types and Programming Languages. MIT Press (cit. on p. 8).
Rosenbloom, Paul C. (1950). The Elements of Mathematical Logic. Dover Publications (cit. on
p. 28).
Soare, Robert I. (1996). Computability and Recursion. The Bulletin of Symbolic Logic 2.3, pp. 284–
321. doi: 10.2307/420992 (cit. on p. 24).
Turing, A. M. (1937). The p-Function in λ-K-Conversion. The Journal of Symbolic Logic 4.2,
p. 164. doi: 10.2307/2268281 (cit. on p. 28).

Lambda Calculus 33/33

https://doi.org/10.2307/420992
https://doi.org/10.2307/2268281

	Lambda Calculus
	Introduction
	Syntax
	Conversion Rules
	Combinators
	References

