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Introduction

Alonzo Church (1903 – 1995)∗

∗Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics.
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Introduction
Some remarks

A formal system invented by Church around 1930s.
The goal was to use the λ-calculus in the foundation of mathematics.
Intended for studying functions and recursion.
Computability model.
A free-type functional programming language.
λ-notation (e.g. anonymous functions and currying).
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Application, Abstraction and Curryfication
Application
Application of the function M to argument N is denoted by M N (juxtaposition).

Abstraction
‘If M is any formula containing the variable x, then λx[M ] is a symbol for the function whose
values are those given by the formula.’ [Church 1932, p. 352]

Curryfication
‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function of one
variable whose values are functions of one variable, and a function of three or more variables
similarly.’ [Church 1932, p. 352]
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Lambda Terms
Definition
Let V be a denumerable set of variables. The set of λ-terms, denoted by Λ, is inductively
defined by

x ∈ V ⇒ x ∈ Λ (variable)
M, N ∈ Λ ⇒ (M N) ∈ Λ (application)

M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ (λ-abstraction)
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Lambda Terms
Remark
Usually, the set of λ-terms Λ is defined by the abstract grammar∗

Λ ∋ t ::= x (variable)
| t t (application)
| λx.t (λ-abstraction)

∗See, e.g. [Pierce 2002].
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Lambda Terms
Notation
The symbol ‘≡’ denotes the syntactic identity.

Conventions
λ-term variables will be denoted by x, y, z, . . . .
λ-terms will be denoted by M, N, P, Q, . . . .
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Lambda Terms
Conventions and syntactic sugar

Outermost parentheses are not written.
Application has higher precedence, that is,

λ x. M N := (λ x. (M N)).

Application associates to the left, that is,

M N1 N2 . . . Nk := (. . . ((M N1) N2) . . . Nk).

Lambda abstraction associates to the right, that is,

λ x1 x2 . . . xn. M := λ x1. λ x2. . . . λ xn. M

:= (λ x1. (λ x2. (. . . (λxn.M) . . . ))).
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Lambda Terms
Example
Using the conventions and syntactic sugar.

(λ x y z. x z (y z)) u v w

≡ (λ x y z. (x z) (y z)) u v w (left-associative application)
≡ ((λ x y z. (x z) (y z)) u) v w (left-associative application)
≡ (((λ x y z. (x z) (y z)) u) v) w (left-associative application)
≡ (((λ x y z. ((x z) (y z))) u) v) w (application higher precedence)
≡ (((λ x. λ y. λ z. ((x z) (y z))) u) v) w (right-associative λ-abstraction)
≡ (((λ x. λ y. (λ z. ((x z) (y z)))) u) v) w (right-associative λ-abstraction)
≡ (((λ x. (λ y. (λ z. ((x z) (y z))))) u) v) w (right-associative λ-abstraction)
≡ ((((λ x. (λ y. (λ z. ((x z) (y z))))) u) v) w) (remove outermost parentheses)
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Binding
Definition
A variable x occurs free in M if x is not in the scope of λx. Otherwise, x occurs bound.

Definition
The set of free variables in M , denoted by FV(M), is inductively defined by

FV(x) := {x},

FV(M N) := FV(M) ∪ FV(N),
FV(λx.M) := FV(M) − {x}.
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Substitution
Definition
The result of substituting N for every free occurrence of x in M , and changing bound
variables to avoid clashes, denoted by M [ x 7→ N ], is defined by [Hindley and Seldin 2008,
Definition 1.12]

x[ x 7→ N ] := N ;
y[ x 7→ N ] := y, if y ̸≡ x;

(P Q)[ x 7→ N ] := P [ x 7→ N ] Q[ x 7→ N ];
(λx.P )[ x 7→ N ] := λx.P ;
(λy.P )[ x 7→ N ] := λy.P, if y ̸≡ x and x ̸∈ FV(P );
(λy.P )[ x 7→ N ] := λy.P [ x 7→ N ], if y ̸≡ x, x ∈ FV(P ) and y ̸∈ FV(N);
(λy.P )[ x 7→ N ] := λz.P [ x 7→ N ][ y 7→ z ], if y ̸≡ x, x ∈ FV(P ) and y ∈ FV(N);

where in the last equation, the variable z is chosen such that z ̸∈ FV(N P ).
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Substitution
Example
(y (λ v. x v))[ x 7→ (λ y. v y) ] ≡ y (λ z. (λ y. v y) z) (with z ̸≡ v, y, x).
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Conversion Rules
Introduction
The functional behaviour of the λ-calculus is formalised through of their conversion rules:

λx.N =α λy.(N [ x 7→ y ]) (α-conversion)

(λx.M) N =β M [ x 7→ N ] (β-conversion)

λ x. M x =η M (η-conversion)
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Alpha Congruence
Definition
A changed of bound variables in M is to replace a subterm λx.N of M by λy.(N [ x 7→ y ])
where y does not occur in N .

Definition
A λ-term M is α-congruent with N , denoted by M ≡α N , iff N results from M by a finite
(perhaps empty) series of changes of bound variables.

Example
Whiteboard.
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Alpha Congruence
Theorem
The relation ≡α is an equivalence relation.∗

Convention
Following Barendregt [(1981) 2004, Convention 2.1.12], we syntactically identified λ-terms that
are α-congruent, that is,

M ≡ N := M ≡α N.

∗See, e.g. [Hindley and Seldin 2008, Lemma 1.19b].
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Compatible Relations
Definition
A binary relation R on Λ is compatible iff ∗

(M, N) ∈ R ⇒


(P M, P N) ∈ R,

(M P, N P ) ∈ R,

(λx.M, λx.N) ∈ R.

∗See, e.g. [Barendregt (1981) 2004, Definition 3.1.1i].
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Beta Reduction
Definition
The binary relation β on Λ is defined by

β := { ((λx.M) N, M [ x 7→ N ]) | M, N ∈ Λ }.
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Beta Reduction
Definition
The binary relation one step β-reduction on Λ, denoted by →β, is the compatible closure
of β.

The →β relation can be inductively defined by∗

(M, N) ∈ β

M →β N

M →β N

P M →β P N

M →β N

M P →β N P

M →β N

λx.M →β λx.N

∗See, e.g. [Barendregt (1981) 2004, Definition 3.1.5].
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Beta Reduction
Definition
The binary relation β-reduction on Λ, denoted by ↠β, is the reflexive and transitive closure
of →β.

The ↠β relation can be inductively defined by∗

M →β N

M ↠β N

M ↠β M

M ↠β N N ↠β P

M ↠β P

∗See, e.g. [Barendregt (1981) 2004, Definition 3.1.5].
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Beta Equality or Beta Convertibility
Definition
The binary relation β-equality (or β-convertibility) on Λ, denoted by =β, is the equivalence
relation generated by ↠β.

The =β relation can be inductively defined by∗

M ↠β N

M =β N

M =β N

N =β M

M =β N N =β P

M =β P

∗See, e.g. [Barendregt (1981) 2004, Definition 3.1.5].
Lambda Calculus 22/33



Normal Forms
Definition
A β-redex is a λ-term of the form (λx.M) N .

Definition
A λ-term which contains no β-redex is in β-normal form (β-nf).

Definition
A λ-term N is a β-nf of M (or M has the β-nf M) iff N is a β-nf and M =β N .

Example
Whiteboard.
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Normal Forms
Remark
Church [1935, 1936] proved that the set

{ M ∈ Λ | M has a β-normal form }

is not computable∗ (i.e. undecidable). This was the first undecidable set ever.†

∗We use the term ‘computable’ rather than ‘recursive’ following to [Soare 1996].
†See also [Barendregt 1990].
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Combinators
Definition
A combinator (or closed λ-term) is a λ-term without free variables.

Convention
A combinator called for example pred will be denoted by pred.
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Combinators
Example
Some common combinators.

B := λ f g x. f (g x) (a composition combinator)
B′ := λ f g x. g (f x) (a reversed composition combinator)
C := λ x y z. x z y (a permuting combinator)
I := λx.x (an identity combinator)

K := λ x y. x (a projection combinator)
M := λ x. x x (a doubling combinator)
S := λ f g x. f x (g x) (a stronger composition combinator)
T := λ x y. y x (a permuting combinator)
V := λ x y z. z y x (a permuting combinator)
W := λ f x. f x x (a doubling combinator)
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Combinators
Remark
The programs in a programming language based on λ-calculus are combinators.

Remark
The combinators K and S (i.e. the combinatory logic) are a Turing-complete language.
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Fixed-Point Combinators
Definition
A fixed-point combinator is any combinator fix such that for all terms M ,

fix M =β M (fix M).

Theorem
The combinator Y := λ f. V V , where V ≡ λ x. f (x x), is a fixed-point combinator.∗

Theorem
The combinator U U, where U := λ u x. x (u u x), is a fixed-point combinator.†

∗According to [Hindley and Seldin 2008, p. 36], this combinator was hinted by Curry in 1929 and first
published by Rosenbloom [1950]. See also [Barendregt (1981) 2004, Corollary 6.1.3].

†Defined by Turing [1937]. See, also [Barendregt (1981) 2004, Definition 6.1.4].
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Recursion Using Fixed-Points
Example
An informal example using the factorial function [Peyton Jones 1987, § 2.4.1].

fac := λ n. if (n == 0) then 1 else n ∗ fac (n − 1) (combinator)
≡ λ n. (. . . fac . . . ) (recursive combinator)
≡ (λ f. λ n. (. . . f . . . )) fac (λ-abstraction on fac)

Now, we can redefine the factorial function using fix.

h := λ f. λ n. (. . . f . . . ) (non-recursive combinator)

fac := fix h (fac is a fixed-point of h)

(continued on next slide)
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Recursion Using Fixed-Points
Example (continuation)

fac 1 ≡ fix h 1
=β h (fix h) 1
≡ (λ f. λ n. (. . . f . . . )) (fix h) 1
↠β if (1 == 0) then 1 else 1 ∗ (fix h 0)
↠β 1 ∗ (fix h 0)
=β 1 ∗ (h(fix h) 0)
≡ 1 ∗ ((λ f. λ n. (. . . f . . . )) (fix h) 0)
↠β 1 ∗ (if (0 == 0) then 1 else 1 ∗ (fix h (−1)))
↠β 1 ∗ 1
↠β 1
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