Ordinals and Typed Lambda Calculus

Lambda Calculus

Andrés Sicard-Ramirez

Universidad EAFIT

Semester 2018-2

Introduction

Alonzo Church (1903 — 1995)*

*Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics.
Lambda Calculus 2/33

https://history-computer.com/ModernComputer/thinkers/Church.html
https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html

Introduction

Some remarks
@ A formal system invented by Church around 1930s.
The goal was to use the A-calculus in the foundation of mathematics.
Intended for studying functions and recursion.
Computability model.

A free-type functional programming language.

A-notation (e.g. anonymous functions and currying).

3/33

Application, Abstraction and Curryfication

Application
Application of the function M to argument N is denoted by M N (juxtaposition).

Lambda Calculus 4/33

Application, Abstraction and Curryfication

Application
Application of the function M to argument N is denoted by M N (juxtaposition).

Abstraction
‘If M is any formula containing the variable z, then A\z[M] is a symbol for the function whose
values are those given by the formula." [Church , p. 352]

5/33

Application, Abstraction and Curryfication

Application
Application of the function M to argument N is denoted by M N (juxtaposition).

Abstraction

‘If M is any formula containing the variable z, then Axz[M] is a symbol for the function whose
values are those given by the formula." [Church , p. 352]

Curryfication

‘Adopting a device due to Schonfinkel, we treat a function of two variables as a function of one
variable whose values are functions of one variable, and a function of three or more variables
similarly. [Church , p. 352]

6/33

Lambda Terms

Definition
Let V be a denumerable set of variables. The set of A-terms, denoted by A, is inductively
defined by

reV=xel (variable)
M,NeA= (MN)eA (application)
MeANzeV=AM)eA (A\-abstraction)

7/33

Lambda Terms

Remark
Usually, the set of A\-terms A is defined by the abstract grammar*

Ast:=z (variable)
| tt (application)
| Azt (\-abstraction)

*See, e.g. [Pierce I
8/33

Lambda Terms

Notation
The symbol ‘=" denotes the syntactic identity.

Conventions
@)\-term variables will be denoted by =, vy, 2,

@ \-terms will be denoted by M, N, P, Q,....

9/33

Lambda Calculus

Lambda Terms

Conventions and syntactic sugar
@ Outermost parentheses are not written.

@ Application has higher precedence, that is,
Ax. M N = (Az. (M N)).
@ Application associates to the left, that is,
M Ny Ny...Ni = (...((M Ny1)Ng)...Ng).
@ Lambda abstraction associates to the right, that is,

Ax1To...Tn. M = Xx1. A29. ... A20). M
=(Az1.Az2. («.. Az M) ..L))).

10/33

Lambda Terms

Example

Using the conventions and syntactic sugar.

ANzxyz.zz(yz)uvw

=Azyz (z2)(yz)uvw (left-associative application)
=((Azyz. (z2)(yz)u)vw (left-associative application)
=(Azxyz. (z2)(yz)u)v)w (left-associative application)
=((Azyz. (x2)(yz)u)v)w (application higher precedence)
=(Az. Ay Az ((x2)(y2))u)v)w (right-associative A-abstraction)
=(Az. dy.(Az. ((x2) (y2)))) u)v)w (right-associative A-abstraction)
=(((Az. Ay-(Az.((x2)(y2))))) uw)v)w (right-associative A-abstraction)
=(((Az. Ay-(Az.((x2) (y2))))) u) v) w) (remove outermost parentheses)

11/33

Binding

Definition
A variable x occurs free in M if x is not in the scope of Axz. Otherwise, x occurs bound.

Definition
The set of free variables in M, denoted by FV (M), is inductively defined by

FV(z) = {z},
FV(M N) = FV(M)UFV(N),
FV(Az.M) :=FV(M) — {z}.

12/33

Substitution

Definition
The result of substituting IV for every free occurrence of x in M, and changing bound

variables to avoid clashes, denoted by M|z — N, is defined by [Hindley and Seldin
Definition 1.12]

z[x — N]:= N;
ylz — N|:=y, if y # ;
(PQ)[w+ N] = Plz > N]Qlz - N
(Ax.P)[x +— N| = \z.P;
(Ay.P)[z — N]:= \y.P, if y £ x and 2 € FV(P);
(Ay.P)[z — N]:= \y.Plz+— NJ, ify#Zxz,x € FV(P)andy ¢ FV(N);
(Ay.P)[z — N]=Xz.Plz— N][y+— z]|, ify#z,o€FV(P)andy € FV(N);

where in the last equation, the variable z is chosen such that z ¢ FV(N P).

13/33

Substitution

Example

(y(Av.zv))[z— Ay.vy) | =y(Az. (Ay.vy) 2) (with z £ v, y,).

Lambda Calculus 14/33

Conversion Rules

Introduction
The functional behaviour of the A-calculus is formalised through of their conversion rules:

Ax.N =, A\y.(N[z — y]) (a-conversion)
(Ax.M)N =g M|z +— N | (/3-conversion)
Ae.Mx=, M (n-conversion)

15/33

Alpha Congruence

Definition

A changed of bound variables in M is to replace a subterm Ax.N of M by A\y.(N[xz — y])
where y does not occur in V.

Definition
A A-term M is a-congruent with N, denoted by M =, N, iff N results from M by a finite

(perhaps empty) series of changes of bound variables.

Example
Whiteboard.

16/33

Alpha Congruence

Theorem

The relation =, is an equivalence relation.*

Convention

Following Barendregt [(1981) , Convention 2.1.12], we syntactically identified A-terms that
are a-congruent, that is,
M=N=M=,N.

*See, e.g. [Hindley and Seldin , Lemma 1.19b].
17/33

Compatible Relations

Definition
A binary relation R on A is compatible iff*

(PM,PN) € R,
(M,N)e R = (M P,NP) e R,

(Ax.M, x.N) € R.

*See, e.g. [Barendregt (1981) . Definition 3.1.1i].

18/33

Beta Reduction

Definition
The binary relation 8 on A is defined by

B:={((Ae.M)N,M[z+ N])| M,N € A}.

Lambda Calculus 19/33

Beta Reduction

Definition
The binary relation one step 3-reduction on A, denoted by — g3, is the compatible closure

of 5.

The — 3 relation can be inductively defined by*

(M,N)ep
M—>5N

M—>5N M—}BN M—>5N
PM—=3;PN MP—=3NP Xe.M—gAie.N

*See, e.g. [Barendregt (1981) . Definition 3.1.5].
20/33

Beta Reduction

Definition

The binary relation B-reduction on A, denoted by —g, is the reflexive and transitive closure

of —)B.

The — 3 relation can be inductively defined by*

M—)ﬁN
M —g N

M —g N N —g P

M —g M M —g P

*See, e.g. [Barendregt (1981)

, Definition 3.1.5].

21/33

Beta Equality or Beta Convertibility

Definition
The binary relation -equality (or 3-convertibility) on A, denoted by =g, is the equivalence
relation generated by — 3.
The =4 relation can be inductively defined by*
M —g N
M=sN

M=3N M=3N N=3P
N=3 M M=3P

*See, e.g. [Barendregt (1981) . Definition 3.1.5].
22/33

Normal Forms

Definition
A (B-redex is a A-term of the form (Az.M) N.

Definition
A A-term which contains no [-redex is in B-normal form (/3-nf).

Definition
A A-term N is a B-nf of M (or M has the 8-nf M) iff N is a f-nf and M =5 N.

Example
Whiteboard.

23/33

Normal Forms

Remark
Church | : | proved that the set

{M € A| M has a S-normal form }

is not computable* (i.e. undecidable). This was the first undecidable set ever.

*We use the term ‘computable’ rather than ‘recursive’ following to [Soare I

TSee also [Barendregt I
24/33

Combinators

Definition
A combinator (or closed A-term) is a A-term without free variables.

Convention
A combinator called for example pred will be denoted by pred.

25/33

Combinators

Example

Some common combinators.

B:=X\fga. f(ga)
B = Afga.g(fa)
C=Xzxyz.xzy

| = Az.x
K=Azy.x
M= Az.xx
S=Afgx. fz(gx)
T=Azy.yx

Vi=Azxyz.zyx
W=Afz. foxx

a composition combinator)

a reversed composition combinator)
a permuting combinator)

an identity combinator)

a projection combinator)

a stronger composition combinator)
a permuting combinator)

(
(
(
(
(
(a doubling combinator)
(
(
(a permuting combinator)
(

a doubling combinator)

26/33

Combinators

Remark
The programs in a programming language based on A-calculus are combinators.

Remark
The combinators K and S (i.e. the combinatory logic) are a Turing-complete language.

27/33

Fixed-Point Combinators

Definition
A fixed-point combinator is any combinator fix such that for all terms M,

fix M =5 M (fix M).

Theorem
The combinator Y := X f.V V, where V = Az. f (zx), is a fixed-point combinator.*

Theorem

The combinator U U, where U := Aux.z (vuz), is a fixed-point combinator.f

*According to [Hindley and Seldin , p. 36], this combinator was hinted by Curry in 1929 and first
published by Rosenbloom []. See also [Barendregt (1981) , Corollary 6.1.3].
"Defined by Turing [1937]. See, also [Barendregt (1981) , Definition 6.1.4].

28/33

Recursion Using Fixed-Points

Example
An informal example using the factorial function [Peyton Jones , §2.4.1].
fac := An.if (n == 0) then 1l elsen * fac (n — 1) (combinator)
=An.(...fac...) (recursive combinator)
=\f.An. (... f...))fac (A-abstraction on fac)

29/33

Recursion Using Fixed-Points

Example
An informal example using the factorial function [Peyton Jones , §2.4.1].
fac := An.if (n == 0) then lelsen * fac (n — 1) (combinator)
=An.(...fac...) (recursive combinator)
=\f.An. (... f...))fac (A-abstraction on fac)

Now, we can redefine the factorial function using fix.

he=XAfAn.(...f...) (non-recursive combinator)
fac := fixh (fac is a fixed-point of h)

(continued on next slide)

30/33

Recursion Using Fixed-Points

Example (continuation)

facl =fixhl
=5 h(fixh)1
=AfAn. (.. f.00)(fixh) 1
—3if (1 == 0)thenlelsel * (fixh0)
—g 1% (fixh0)
=g 1% (h(fixh)0)
=1x((AfAn. (... f...)) (fixh)0)
—g 1% (if (0 == 0) then L else 1 (fixh (—1)))
—glx1
gl

Lambda Calculus 31/33

References

® Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition,
6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on
pp. 17, 18, 20-22, 28).

@ Barendregt, Henk (1990). Functional Programming and Lambda Calculus. In: Handbook of The-
oretical Computer Science. Ed. by van Leeuwen, J. Vol. B. Formal Models and Semantics. MIT

Press. Chap. 7. DOL: (cit. on p. 24).

[Church, Alonzo (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics
33.2, pp. 346-366. DOT: (cit. on pp. 4-6).

[— (1935). An Unsolvable Problem of Elementary Number Theory. Preliminar Report (Abstract).
Bulletin of the American Mathematical Society 41.5, pp. 332-333. DOl

(cit. on p. 24).

B — (1936). An Unsolvable Problem of Elementary Number Theory. American Journal of Math-
ematics 58.2, pp. 345-363. DOL: (cit. on p. 24).

® Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An Intro-
duction. Cambridge University Press (cit. on pp. 13, 17, 28).

32/33

https://doi.org/10.1016/B978-0-444-88074-1.50012-3
https://doi.org/10.2307/1968337
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.2307/2371045

References

® Peyton Jones, Simon L. (1987). The Implementation of Functional Programming Languages. Series
in Computer Sciences. Prentice-Hall International (cit. on pp. 29, 30).
® Pierce, Benjamin C. (2002). Types and Programming Languages. MIT Press (cit. on p. 8).

® Rosenbloom, Paul C. (1950). The Elements of Mathematical Logic. Dover Publications (cit. on
p. 28).

[4 Soare, Robert I. (1996). Computability and Recursion. The Bulletin of Symbolic Logic 2.3, pp. 284—
321. por: (cit. on p. 24).

[4 Turing, A. M. (1937). The p-Function in A-K-Conversion. The Journal of Symbolic Logic 4.2,
p. 164. DOL: (cit. on p. 28).

33/33

https://doi.org/10.2307/420992
https://doi.org/10.2307/2268281

	Lambda Calculus
	Introduction
	Syntax
	Conversion Rules
	Combinators
	References

