Ordinals and Typed Lambda Calculus Numeral Systems in the Lambda Calculus

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2018-2

Booleans

We encoding the Booleans.

true := $\lambda x y \cdot x$, where true $M N =_{\beta} M$.

false := $\lambda x y. y$, where false $M N =_{\beta} N$.

Definition

For $n \in \mathbb{N}$ and $F, M \in \Delta$, we define

$$\begin{split} F^0 \, M &\coloneqq M, \\ F^{n+1} \, M &\coloneqq F \, (F^n \, M). \end{split}$$

Definition

The **Church numerals**, denoted by c_n with $n \in \mathbb{N}$, encode the natural numbers.

One definition:

$$\mathbf{c}_{n} \coloneqq \lambda \, f \, x. \, f^{n} \, x,$$

Other definition:

$$c_0 \coloneqq \lambda f x. x,$$

succ $\coloneqq \lambda n f x. f (n f x),$
 $c_{n+1} \coloneqq succ c_n.$

Example

 β -nf's for some numerals.

$$\begin{split} \mathbf{c}_{\mathbf{0}} &=_{\beta} \lambda \, f \, x. \, x, \\ \mathbf{c}_{\mathbf{1}} &=_{\beta} \lambda \, f \, x. \, f \, x, \\ \mathbf{c}_{\mathbf{2}} &=_{\beta} \lambda \, f \, x. \, f \, (f \, x), \\ \mathbf{c}_{\mathbf{3}} &=_{\beta} \lambda \, f \, x. \, f \, (f \, (f \, x)). \end{split}$$

Whiteboard.

Addition, multiplication and exponentiation

Encoding for the arithmetic operations.

 $\begin{aligned} & \mathsf{add} \coloneqq \lambda \, m \, n \, f \, x. \, m \, f \, (n \, f \, x), \, \mathsf{where} & \mathsf{add} \, \mathsf{c}_m \, \mathsf{c}_n =_\beta \mathsf{c}_{m+n}. \\ & \mathsf{mult} \coloneqq \lambda \, m \, n \, f \, x. \, m \, (n \, f) \, x \\ & \equiv \lambda \, m \, n \, f. \, m \, (n \, f), \, \mathsf{where} & \mathsf{mult} \, \mathsf{c}_m \, \mathsf{c}_n =_\beta \mathsf{c}_{m \times n}. \\ & \mathsf{exp} \coloneqq \lambda \, m \, n \, f \, x. \, (n \, m) \, f \, x, \, \mathsf{where} & \mathsf{exp} \, \mathsf{c}_m \, \mathsf{c}_n =_\beta \mathsf{c}_{m^n}. \end{aligned}$

Testing for zero

A combinator for testing for zero is defined by

 $isZero \coloneqq \lambda n. n (\lambda x. false) true,$

where

isZero c₀ = $_{\beta}$ true, isZero c_{n+1} = $_{\beta}$ false.

Predecessor

A predecessor combinator is defined by

$$\mathsf{pred} \coloneqq \lambda \, n \, f \, x. \, n \, (\lambda \, g \, h. \, h \, (g \, f)) \, (\lambda u. x) \, (\lambda u. u),$$

where

 $\begin{aligned} & \operatorname{pred} \mathsf{c}_0 & =_\beta \mathsf{c}_0, \\ & \operatorname{pred} \mathsf{c}_{n+1} =_\beta \mathsf{c}_n. \end{aligned}$

Recursion

The factorial function is an example of recursive functions on natural numbers following the schemata

$$\begin{aligned} f & : \mathbb{N} \to A \\ f & 0 & = a \\ f & (S n) = g n (f n) \end{aligned}$$

where A is a set, $a \in A$, $g : \mathbb{N} \to A \to A$ and S is the successor function.

Remark

A reader familiarised with recursion theory will identify the primitive recursion schemata.

A recursor for natural numbers

Let A be a set. From the previous schemata for (primitive) recursive functions, we define a recursor.*

rec :
$$(\mathbb{N} \to A \to A) \to A \to \mathbb{N} \to A$$

rec $f a 0 = a$
rec $f a (S n) = f n (rec f a n)$

 $^{^{\}ast}\text{A}$ higher-order function which allow define recursive functions.

Recursor

Since rec is also a recursive function, we can define a recursor for numerals using fix.

$$\mathbf{h} \coloneqq \lambda r f a n. (\mathsf{isZero} n) a (f (\mathsf{pred} n) (r f a (\mathsf{pred} n)))),$$
$$\mathsf{rec} \coloneqq \mathsf{fix} \mathbf{h},$$

where

$$\operatorname{rec} f a c_{0} =_{\beta} a,$$
$$\operatorname{rec} f a c_{n+1} =_{\beta} f c_{n} (\operatorname{rec} f a c_{n}).$$

Recursor

Since rec is also a recursive function, we can define a recursor for numerals using fix.

$$\mathbf{h} \coloneqq \lambda \, r \, f \, a \, n. \, (\mathsf{isZero} \, n) \, a \, (f \, (\mathsf{pred} \, n) \, (r \, f \, a \, (\mathsf{pred} \, n)))),$$

rec := fix h,

where

$$\operatorname{rec} f \, a \, \mathbf{c}_0 =_{\beta} a,$$
$$\operatorname{rec} f \, a \, \mathbf{c}_{n+1} =_{\beta} f \, \mathbf{c}_n \, (\operatorname{rec} f \, a \, \mathbf{c}_n).$$

Question

What is it necessary for defining rec? A fixed-point combinator, (implicit) 'Boolean' case analysis, a test for zero and a predecessor function.

Example

A combinator for the factorial function

$$\begin{aligned} &\text{fac} &: \mathbb{N} \to \mathbb{N} \\ &\text{fac} \ 0 &= 1 \\ &\text{fac} \ (\text{S} \ n) = \text{S} \ n \times \text{fac} \ n \end{aligned}$$

is defined by

 $fac \coloneqq \operatorname{rec}(\lambda x y. \operatorname{mult}(\operatorname{succ} x) y) c_1.$

Definition

A number-theoretic function is a function whose signature is

 $\mathbb{N}^k \to \mathbb{N}$, with $k \in \mathbb{N}$.

Definition

Let φ be a partial number-theoretic function $\varphi : \mathbb{N}^k \to \mathbb{N}$. The function φ is λ -definable respect to the Church encoding iff there exists a λ -term F such that for all $n_1, \ldots, n_k \in \mathbb{N}$,

$$\varphi(n_1, \dots, n_k) = a \Rightarrow F \operatorname{c}_{n_1} \dots \operatorname{c}_{n_k} =_{\beta} \operatorname{c}_a,$$
$$\varphi(n_1, \dots, n_k) \text{ does not exits} \Rightarrow F \operatorname{c}_{n_1} \dots \operatorname{c}_{n_k} \text{ has no } \beta\text{-nf}.$$

*See, e.g. [Barendregt (1981) 2004, Corollary 6.4.6] and [Hindley and Seldin 2008, Theorem 4.23]. Numeral Systems in the Lambda Calculus

Definition

Let φ be a partial number-theoretic function $\varphi : \mathbb{N}^k \to \mathbb{N}$. The function φ is λ -definable respect to the Church encoding iff there exists a λ -term F such that for all $n_1, \ldots, n_k \in \mathbb{N}$,

$$\varphi(n_1, \dots, n_k) = a \Rightarrow F \operatorname{c}_{n_1} \dots \operatorname{c}_{n_k} =_{\beta} \operatorname{c}_a,$$

 $\varphi(n_1, \dots, n_k)$ does not exits $\Rightarrow F \operatorname{c}_{n_1} \dots \operatorname{c}_{n_k}$ has no β -nf.

Theorem

The Turing-computable functions are λ -definable respect to the Church encoding.*

^{*}See, e.g. [Barendregt (1981) 2004, Corollary 6.4.6] and [Hindley and Seldin 2008, Theorem 4.23]. Numeral Systems in the Lambda Calculus

Definition

A numeral system is a sequence of combinators

 $\mathsf{d}=\mathsf{d}_0,\mathsf{d}_1,\ldots$

and combinators true_d, false_d, succ_d and isZero_d such that for all $n \in \mathbb{N}$ [Barendregt (1981) 2004, Definition 6.4.1],

 $\begin{aligned} & \operatorname{succ}_{\mathsf{d}} \mathsf{d}_n & =_\beta \mathsf{d}_{n+1}, \\ & \operatorname{isZero}_{\mathsf{d}} \mathsf{d}_0 & =_\beta \operatorname{true}_{\mathsf{d}}, \\ & \operatorname{isZero}_{\mathsf{d}} \mathsf{d}_{n+1} =_\beta \operatorname{false}_{\mathsf{d}}. \end{aligned}$

Definition

A numeral system is a sequence of combinators

 $\mathsf{d}=\mathsf{d}_0,\mathsf{d}_1,\ldots$

and combinators true_d, false_d, succ_d and isZero_d such that for all $n \in \mathbb{N}$ [Barendregt (1981) 2004, Definition 6.4.1],

 $\begin{aligned} & \operatorname{succ}_{\mathsf{d}} \mathsf{d}_n & =_\beta \mathsf{d}_{n+1}, \\ & \operatorname{isZero}_{\mathsf{d}} \mathsf{d}_0 & =_\beta \operatorname{true}_{\mathsf{d}}, \\ & \operatorname{isZero}_{\mathsf{d}} \mathsf{d}_{n+1} =_\beta \operatorname{false}_{\mathsf{d}}. \end{aligned}$

Example

The Church numerals $c = c_0, c_1, \ldots$ and the combinators true, false, succ and isZero are a numeral system.

Notation

We shall denote by d a numeral system $d_0, d_1, \ldots, true_d, false_d, succ_d$ and $isZero_d$.

Notation

We shall denote by d a numeral system $d_0, d_1, \ldots, true_d, false_d, succ_d$ and $isZero_d$.

Lambda definable functions on a numeral system

Let d be a numeral system and let φ be a partial number-theoretic function $\varphi : \mathbb{N}^k \to \mathbb{N}$. The function φ is λ -definable respect to the numeral system d iff there exists a λ -term F such that for all $n_1, \ldots, n_k \in \mathbb{N}$,

$$\varphi(n_1, \dots, n_k) = a \Rightarrow F \operatorname{\mathsf{d}}_{n_1} \dots \operatorname{\mathsf{d}}_{n_k} =_\beta \operatorname{\mathsf{d}}_a,$$
$$\varphi(n_1, \dots, n_k) \text{ does not exits} \Rightarrow F \operatorname{\mathsf{d}}_{n_1} \dots \operatorname{\mathsf{d}}_{n_k} \text{ has no } \beta\text{-nf.}$$

Definition

A numeral system d is **adequate** iff all the Turing-computable functions are λ -definable with respect to d [Barendregt (1981) 2004, Definition 6.4.2ii].

Definition

A numeral system d is **adequate** iff all the Turing-computable functions are λ -definable with respect to d [Barendregt (1981) 2004, Definition 6.4.2ii].

Example

The Church numeral system is adequate.

Theorem

A numeral system d is adequate iff there exists a combinator $pred_d$ such that for all $n \in \mathbb{N}$ [Barendregt (1981) 2004, Theorem 6.4.3],

 $\operatorname{pred}_{\operatorname{\mathsf{d}}}\operatorname{\mathsf{d}}_{n+1}=_{\beta}\operatorname{\mathsf{d}}_n.$

Theorem

A numeral system d is adequate iff there exists a combinator $pred_d$ such that for all $n \in \mathbb{N}$ [Barendregt (1981) 2004, Theorem 6.4.3],

 $\operatorname{pred}_{\operatorname{\mathsf{d}}}\operatorname{\mathsf{d}}_{n+1} =_{\beta} \operatorname{\mathsf{d}}_n.$

Remark

There are various adequate numeral systems in the literature. See, e.g. Barendregt [(1981) 2004], Goldberg [2000] and Jansen [2013].

References

- Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on pp. 15–18, 21–24).
- Goldberg, Mayer (2000). An Adequate and Efficient Left-Associated Binary Numeral System in the λ-Calculus. Journal of Functional Programming 10.6, pp. 607–623. DOI: 10.1017/S095679680000380 (cit. on pp. 23, 24).
 - Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An Introduction. Cambridge University Press (cit. on pp. 15, 16).
 - Jansen, Jan Martin (2013). Programming in the λ -Calculus: From Church to Scott and Back. In: The Beauty of Functional Code. Ed. by Achten, Peter and Koopman, Pieter. Vol. 8106. Lecture Notes in Computer Science. Springer, pp. 168–180. DOI: 10.1007/978-3-642-40355-2_12 (cit. on pp. 23, 24).