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Church Encoding

Booleans
We encoding the Booleans.

true == Axy.x, where true M N=gM.

false := Az y.y, where false M N =gNN.
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Church Encoding

Definition
Forn € Nand F, M € A, we define

FYM = M,
F"PL M = F(F™ M).
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Church Encoding

Definition
The Church numerals,

One definition:

Other definition:

denoted by c,, with n € N, encode the natural numbers.

chn=Afx fu,

co=Afzx.x,
succ:=Anfz. f(nfz),

Cpt1 = SUCCCy,.
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Church Encoding

Example

B-nf's for some numerals.

co=gAfx.x,
ca=gAfx fux,
o=gAfz f(fz),
cs=gAfz f(f(fz)).

Whiteboard.
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Church Encoding

Addition, multiplication and exponentiation

Encoding for the arithmetic operations.

add :==AXmn fz.m f(n fx), where

mult:=Amnfx.m(nf)x

=Amn f.m(nf), where

exp = Amn fx.(nm) fx, where
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add ¢y, ¢, =B Cm+n-

multc,, ¢, =B Cmxn-

eXp Cm Cn :/3 Cmn.
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Church Encoding

Testing for zero
A combinator for testing for zero is defined by

isZero := An.n (Az.false) true,

where

isZeroco =g true,

isZeroc,1 =4 false.
+1=p
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Church Encoding

Predecessor
A predecessor combinator is defined by

pred == An fx.n(Agh.h(gf)) Au.x) (Au.u),

where

predcg =g co,

pred cp,4+1 =8 Cp.
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Church Encoding

Recursion
The factorial function is an example of recursive functions on natural numbers following the
schemata

f :N— A
f0 =a
f(Sn)=gn(fn)

where Aisaset,ac€ A, g: N — A — A and S is the successor function.

Remark
A reader familiarised with recursion theory will identify the primitive recursion schemata.
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Church Encoding

A recursor for natural numbers

Let A be a set. From the previous schemata for (primitive) recursive functions, we define a
recursor.*

rec " N-A—-A)—-A-N-A
rec fa0 =a

rec fa(Sn)= fn(recfan)

*A higher-order function which allow define recursive functions.
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Church Encoding

Recursor
Since rec is also a recursive function, we can define a recursor for numerals using fix.

h:=Ar fan.(isZeron)a (f (predn) (r fa(predn)))),

rec := fix h,
where

recfaco =ga,

rec fac,11=p fc,(rec facy,).
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Church Encoding

Recursor
Since rec is also a recursive function, we can define a recursor for numerals using fix.

h:=Ar fan.(isZeron)a (f (predn) (r fa(predn)))),

rec := fix h,
where

rec faco =ga,
rec fac,11=p fc,(rec facy,).
Question

What is it necessary for defining rec? A fixed-point combinator, (implicit) ‘Boolean’ case ana-
lysis, a test for zero and a predecessor function.
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Church Encoding

Example

A combinator for the factorial function

fac :N— N
facO =1

fac (Sn) =Sn x facn

is defined by
fac :== rec (Azy. mult (succz) y) c;.
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Church Encoding

Definition
A number-theoretic function is a function whose signature is

N* — N, with k& € N.
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Church Encoding

Definition
Let ¢ be a partial number-theoretic function ¢ : N¥ — N. The function ¢ is A-definable
respect to the Church encoding iff there exists a A-term F such that for all nq,...,n; € N,

oni,...,nk) =a= Fc, ...c, =gC¢q,
©(ni,...,n;) does not exits = F'c,, ...c,, has no S-nf.

*See, e.g. [Barendregt (1981) , Corollary 6.4.6] and [Hindley and Seldin , Theorem 4.23].
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Church Encoding

Definition
Let ¢ be a partial number-theoretic function ¢ : N¥ — N. The function ¢ is A-definable
respect to the Church encoding iff there exists a A-term F such that for all nq,...,n; € N,
oni,...,nk) =a= Fc, ...c, =gC¢q,
©(ni,...,n;) does not exits = F'c,, ...c,, has no S-nf.
Theorem

The Turing-computable functions are A-definable respect to the Church encoding.*

*See, e.g. [Barendregt (1981) , Corollary 6.4.6] and [Hindley and Seldin , Theorem 4.23].
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Numeral Systems

Definition
A numeral system is a sequence of combinators

d =do,di,...

and combinators truey, falsey, succy and isZerog such that for all n € N [Barendregt (1981)
2004, Definition 6.4.1],

SUCCq dn =B dn+1,
isZerogdg =g truey,

isZeroq d,, 1 =g falsey.
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Numeral Systems

Definition
A numeral system is a sequence of combinators

d =do,di,...

and combinators truey, falsey, succy and isZerog such that for all n € N [Barendregt (1981)
2004, Definition 6.4.1],

SUCCq dn =B dn+1,
isZerogdg =g truey,

isZeroq d,, 1 =g falsey.

Example
The Church numerals ¢ = cg,c1,... and the combinators true, false, succ and isZero are a
numeral system.
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Numeral Systems

Notation
We shall denote by d a numeral system dg, dy, ..., trueq, falseq, succy and isZerogy.
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Numeral Systems

Notation
We shall denote by d a numeral system dg, dy, ..., trueq, falseq, succy and isZerogy.

Lambda definable functions on a numeral system

Let d be a numeral system and let ¢ be a partial number-theoretic function ¢ : N¥ — N. The
function ¢ is A-definable respect to the numeral system d iff there exists a A-term F' such

that for all nqy,...,n; € N,

o(ni,...,ny) =a=Fd, ...d,, =gdg,
©(ni,...,ni) does not exits = F'd,, ...d,, has no S-nf.
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Numeral Systems

Definition
A numeral system d is adequate iff all the Turing-computable functions are A-definable with
respect to d [Barendregt (1981) , Definition 6.4.2ii].
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Numeral Systems

Definition

A numeral system d is adequate iff all the Turing-computable functions are A-definable with
respect to d [Barendregt (1981) , Definition 6.4.2ii].

Example

The Church numeral system is adequate.
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Numeral Systems

Theorem
A numeral system d is adequate iff there exists a combinator predy such that for all n €

N [Barendregt (1981) 2004, Theorem 6.4.3],

predd dn+1 =B dn.
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Numeral Systems

Theorem
A numeral system d is adequate iff there exists a combinator predy such that for all n €
N [Barendregt (1981) , Theorem 6.4.3],

predd dn+1 =B dp.
Remark

There are various adequate numeral systems in the literature. See, e.g. Barendregt [(1981)
|, Goldberg | ] and Jansen | ]
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