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Some History

Lambda calculus [Church 1933, 1941].
Simply typed lambda calculus [Church 1940].
ISWIM (If you See What I Mean) [Landin 1966].
PCF [Plotkin 1977].
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Functional Programming

A description
‘A functional program consists of an expression 𝐸 (representing both the algorithm and the
input). This expression 𝐸 is subject to some rewrite rules. Reduction consists of replacing a
part 𝑃 of 𝐸 by another expression 𝑃 ′ according to the given rewrite rules. In schematic notation

𝐸[𝑃 ] → 𝐸[𝑃 ′],

provided that 𝑃 → 𝑃 ′ is according to the rules. This process of reduction will be repeated until
the resulting expression has no more parts that can be rewritten. This so called normal form 𝐸∗

of the expression 𝐸 consists of the output of the given functional program.’ [Barendregt and
Barendsen 2000, p. 6]
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Functional Programming

Example
From [Barendregt and Barendsen 2000, p. 6].

head (sort (["dog", "rabbit"] ++ sort ["mouse", "cat"]))

→ head (sort (["dog", "rabbit"] ++ ["cat", "mouse"]))

→ head (sort ["dog", "rabbit", "cat", "mouse"])

→ head ["cat", "dog", "mouse", "rabbit"]

→ "cat"
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Lambda Calculus



Introduction

Alonzo Church
(1903 – 1995)

Invented by Church around 1930s
Intended a foundational theory based on functions
and recursion
Computability model
Basis of untyped functional programming languages
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Inconsistencies

𝜆-calculus and logic [Rosser 1984, § 2].
𝜆-calculus and set theory [Paulson 2000, § 4.6].
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Application and Abstraction

Application
Application of the function 𝑀 to argument 𝑁 is denoted by 𝑀𝑋 (juxtaposition).

Abstraction
‘If 𝑀 is any formula containing the variable 𝑥, then 𝜆𝑥[𝑀] is a symbol for the function whose
values are those given by the formula.’ [Church 1932, p. 352]
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Currying

Definition
‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function of one
variable whose values are functions of one variable, and a function of three or more variables
similarly.’ [Church 1932, p. 352]. Such device is called currying after Haskell Curry.

Let 𝑓(𝑥, 𝑦) be a function of two variables. We can define two functions

𝐹𝑥 ∶= 𝜆𝑦.𝑓(𝑥, 𝑦),
𝐹 ∶= 𝜆𝑥.𝐹𝑥.

Then

(𝐹𝑥)𝑦 = 𝐹𝑥𝑦
= 𝑓(𝑥, 𝑦).
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Lambda Terms

Definition
Let 𝑉 = {𝑣0, 𝑣1, … } be a set of variables. The set of 𝜆-terms, denoted Λ, is inductively
defined by

𝑥 ∈ 𝑉 ⇒ 𝑥 ∈ Λ (variable)
𝑀, 𝑁 ∈ Λ ⇒ (𝑀𝑁) ∈ Λ (application)

𝑥 ∈ 𝑉 , 𝑀 ∈ Λ ⇒ (𝜆𝑥𝑀) ∈ Λ (abstraction)
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Conventions

𝑥, 𝑦, 𝑧, … denote arbitrary variables; 𝑀, 𝑁, 𝐿, … denote arbitrary 𝜆-terms.

Application associates to the left
𝑀𝑁1 ⋯ 𝑁𝑘 means (⋯ ((𝑀𝑁1)𝑁2) ⋯ 𝑁𝑘)
Abstraction associates to the right
𝜆𝑥1𝑥2 ⋯ 𝑥𝑛.𝑀 means (𝜆𝑥1(𝜆𝑥2(⋯ (𝜆𝑥𝑛(𝑀)) ⋯)))
Application has higher precedence
𝜆𝑥.𝑃𝑄 means (𝜆𝑥.(𝑃𝑄))
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Alpha Congruence

𝑀 ≡ 𝑁 denotes that
i) 𝑀 and 𝑁 are the same term or
ii) 𝑀 and 𝑁 can be obtained from each other by renaming bound variables.

Examples
𝑥 ≡ 𝑥, 𝜆𝑥.𝑥𝑦 ≡ 𝜆𝑧.𝑧𝑦, (𝜆𝑥.𝑥)𝑧 ≡ (𝜆𝑦.𝑦)𝑥,
𝑥 ≢ 𝑦, 𝜆𝑥.𝑥𝑦 ≢ 𝜆𝑦.𝑦𝑦, (𝜆𝑥.𝑥)𝑧 ≢ (𝜆𝑥.𝑦)𝑧.
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Substitution

Ottmann variable convention
‘If 𝑀1, … , 𝑀𝑛 occur in a certain mathematical context (e.g. definition, proof), then in these
terms all bound variables are chosen to be different from the free variables.’ [Barendregt 2004,
pp. 26 and E1]

Example
We write 𝑦(𝜆𝑥𝑦′.𝑥𝑦′𝑧) for 𝑦(𝜆𝑥𝑦.𝑥𝑦𝑧).
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Substitution

Definition
The result of substituting 𝑁 for the free occurrences of 𝑥 in 𝑀 , denoted 𝑀[𝑥 ∶= 𝑁], is
recursively defined by:

𝑥[𝑥 ∶= 𝑁] ≡ 𝑁,
𝑦[𝑥 ∶= 𝑁] ≡ 𝑦, if 𝑥 ≢ 𝑦,

(𝑀1𝑀2)[𝑥 ∶= 𝑁] ≡ (𝑀1[𝑥 ∶= 𝑁])(𝑀2[𝑥 ∶= 𝑁]),
(𝜆𝑦.𝑀)[𝑥 ∶= 𝑁] ≡ 𝜆𝑦.(𝑀[𝑥 ∶= 𝑁]).

Remark
In the fourth clause it is not needed to say ‘provided that 𝑦 ≢ 𝑥 and 𝑦 ∉ 𝐹𝑉 (𝑁)’. By the
Ottmann variable convention this is the case.
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The Lambda Calculus as a Formal Theory

A equational theory
Formulae: 𝑀 = 𝑁 , where 𝑀, 𝑁 ∈ Λ
Axiom scheme

(𝜆𝑥.𝑀)𝑁 = 𝑀[𝑥 ∶= 𝑁] (𝛽)
Rules
Equality is a congruence relation on Λ, that is,

Equality is a equivalence relation
Equality is compatible with the constructors of 𝜆-terms
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The Lambda Calculus as a Formal Theory

Example
Prove that 𝜆 ⊢ (𝜆𝑥𝑦.𝑥)𝑀𝑁 = 𝑀 for all 𝑀, 𝑁 ∈ Λ.∗

1 (𝜆𝑥𝑦.𝑥)𝑀 = 𝜆𝑦.𝑥[𝑥 ∶= 𝑀] ≡ 𝜆𝑦.𝑀 (𝛽)

2 (𝜆𝑥𝑦.𝑥)𝑀𝑁 = (𝜆𝑦.𝑀)𝑁 (comp. 1)

3 (𝜆𝑦.𝑀)𝑁 = 𝑀[𝑦 ∶= 𝑁] ≡ 𝑀 (𝛽)

4 (𝜆𝑥𝑦.𝑥)𝑀𝑁 = 𝑀 (trans. 2,3)

∗Note that by the Ottmann variable convention it means that 𝑥, 𝑦 ∉ 𝐹𝑉 (𝑀) ∪ 𝐹𝑉 (𝑁).
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The Lambda Calculus as a Formal Theory

Theorem (Barendregt and Barendsen [2000], Lemma 2.9)
𝜆 ⊢ (𝜆𝑥1 ⋯ 𝑥𝑛.𝑀)𝑋1 ⋯ 𝑋𝑛 = 𝑀[𝑥1 ∶= 𝑋1] ⋯ [𝑥𝑛 ∶= 𝑋𝑛].
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Combinators

Examples

identity I ≡ 𝜆𝑥.𝑥 I𝑀 = 𝑀
fst K ≡ 𝜆𝑥𝑦.𝑥 K𝑀𝑁 = 𝑀

snd K∗ ≡ 𝜆𝑥𝑦.𝑦 K∗𝑀𝑁 = 𝑁
stronger composition S ≡ 𝜆𝑓𝑔𝑥.𝑓𝑥(𝑔𝑥) S𝐿𝑀𝑁 = 𝐿𝑁(𝑀𝑁)

composition B ≡ 𝜆𝑓𝑔𝑥.𝑓(𝑔𝑥) B𝐿𝑀𝑁 = 𝐿(𝑀𝑁)
doubling W ≡ 𝜆𝑓𝑥.𝑓𝑥𝑥 W𝑀𝑁 = 𝑀𝑁𝑁
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Reductions

Definitions
i) A binary relation 𝑅 on Λ is called compatible if

𝑀 𝑅 𝑁 ⇒ (𝑍𝑀) 𝑅 (𝑍𝑁),
(𝑀𝑍) 𝑅 (𝑁𝑍) and
(𝜆𝑥.𝑀) 𝑅 (𝜆𝑥.𝑁).

ii) A reduction relation on Λ is a compatible, reflexive and transitive relation.
iii) A congruence relation on Λ is a compatible equivalence relation.

Lambda Calculus 28/81



Reductions

Definitions
i) A binary relation 𝑅 on Λ is called compatible if

𝑀 𝑅 𝑁 ⇒ (𝑍𝑀) 𝑅 (𝑍𝑁),
(𝑀𝑍) 𝑅 (𝑁𝑍) and
(𝜆𝑥.𝑀) 𝑅 (𝜆𝑥.𝑁).

ii) A reduction relation on Λ is a compatible, reflexive and transitive relation.

iii) A congruence relation on Λ is a compatible equivalence relation.

Lambda Calculus 29/81



Reductions

Definitions
i) A binary relation 𝑅 on Λ is called compatible if

𝑀 𝑅 𝑁 ⇒ (𝑍𝑀) 𝑅 (𝑍𝑁),
(𝑀𝑍) 𝑅 (𝑁𝑍) and
(𝜆𝑥.𝑀) 𝑅 (𝜆𝑥.𝑁).

ii) A reduction relation on Λ is a compatible, reflexive and transitive relation.
iii) A congruence relation on Λ is a compatible equivalence relation.

Lambda Calculus 30/81



Reductions

Definitions
Inductive definitions of the binary relations →𝛽, ↠𝛽 and =𝛽 on Λ:

i) 1. (𝜆𝑥.𝑀)𝑁 →𝛽 𝑀[𝑥 ∶= 𝑁]
2. 𝑀 →𝛽 𝑁 ⇒ 𝑍𝑀 →𝛽 𝑍𝑁 , 𝑀𝑍 →𝛽 𝑁𝑍 and 𝜆𝑥.𝑀 →𝛽 𝜆𝑥.𝑁

ii) 1. 𝑀 ↠𝛽 𝑀
2. 𝑀 →𝛽 𝑁 ⇒ 𝑀 ↠𝛽 𝑁
3. 𝑀 ↠𝛽 𝑁, 𝑁 ↠𝛽 𝐿 ⇒ 𝑀 ↠𝛽 𝐿

iii) 1. 𝑀 ↠𝛽 𝑁 ⇒ 𝑀 =𝛽 𝑁
2. 𝑀 =𝛽 𝑁 ⇒ 𝑁 =𝛽 𝑀
3. 𝑀 =𝛽 𝑁, 𝑁 =𝛽 𝐿 ⇒ 𝑀 =𝛽 𝐿
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Reductions

Informally, 𝑀 =𝛽 𝑁 if 𝑀 is connected to 𝑁 via (without direction) → 𝛽-arrows.∗

24 Introduction to Lambda Calculus

(iii) 1. M →→β N ⇒ M =β N ;
2. M =β N ⇒ N =β M ;
3. M =β N,N =β L ⇒ M =βL.

These relations are pronounced as follows.

M →→β N : Mβ-reduces to N ;

M →β N : Mβ-reduces to N in one step;

M =β N : M is β-convertible to N.

By definition →β is compatible, →→β is a reduction relation and =β is a con-
gruence relation.

4.3. Example. (i) Define

ω ≡ λx.xx,

Ω ≡ ωω.

Then Ω →β Ω.
(ii) KIΩ →→β I.

Intuitively, M =β N if M is connected to N via →β-arrows (disregarding
the directions of these). In a picture this looks as follows.

M
•

@
@R 	�

� @
@R

• • • •
N

@
@R 	�

� @
@R 	�

� @
@R 	�

�
• • • •

@
@R 	�

�
•

4.4. Example. KIΩ =β II. This is demonstrated by the following reductions.

KIΩ

@
@R
(λy.I)Ω II

@
@R 	�

�

I

4.5. Proposition. M =β N ⇔ λ `M = N .

Proof. By an easy induction. �

4.6. Definition. (i) A β-redex is a term of the form (λx.M)N . In this case
M [x := N ] is its contractum.

(ii) A λ-term M is a β-normal form (β-nf) if it does not have a β-redex as
subexpression.

(iii) A term M has a β-normal form if M =β N and N is a β-nf, for some
N .

∗Figure from [Barendregt and Barendsen 2000, p. 24].
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Reductions

Theorem (Barendregt and Barendsen [2000], Proposition 4.5, p. 24)

𝑀 =𝛽 𝑁 ⇔ 𝜆 ⊢ 𝑀 = 𝑁
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Reductions

Theorem
If 𝑀 =𝛽 𝑁 , then there is an 𝐿 such that 𝑀 ↠𝛽 𝐿 and 𝑁 ↠𝛽 𝐿.∗

Reduction 25

4.7. Example. (λx.xx)y is not a β-nf, but has as β-nf the term yy.

An immediate property of nf’s is the following.

4.8. Lemma. Let M be a β-nf. Then

M →→β N ⇒ N ≡M.

Proof. This is true if →→β is replaced by →β. Then the result follows by
transitivity. �

4.9. Church-Rosser Theorem. If M →→β N1, M →→β N2, then for some N3

one has N1 →→β N3 and N2 →→β N3; in diagram

M

		���
��

� @@@
@@@RR

N1 N2..............RR 		..
..
..
..
..
..
..

N3

The proof is postponed until 4.19.

4.10. Corollary. If M =β N , then there is an L such that M →→β L and
N →→β L.

An intuitive proof of this fact proceeds by a tiling procedure: given an arrow
path showing M =β N , apply the Church-Rosser property repeatedly in order
to find a common reduct. For the example given above this looks as follows.
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•

This is made precise below.∗Figure from [Barendregt and Barendsen 2000, p. 25].
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Reductions

Theorem (Normalisation Theorem)
If 𝑀 has a normal form, then iterated contraction of the leftmost redex leads to that normal
form [Barendregt and Barendsen 2000, Theorem 4.22].
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Reduction (Evaluation) Strategies

Call-by value (or eager evaluation)
The arguments are evaluated before substituting them into the body a the function.

Call-by-name
The arguments are not evaluated before the function is called but only when needed. If an
argument is used several times, it is re-evaluated each time it is needed.

Call-by-need (or lazy evaluation)
Memoized version of call-by-name.
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Typed Lambda Calculus



Types

Example

𝕍 ∶∶= 𝑣 ∣ 𝕍′ (type variables)

𝕋 ∶∶= 𝕍
∣ ℂ (type constants)
∣ 𝑁0 (empty type)
∣ 𝑁1 (unit type)
∣ 𝕋 → 𝕋 (function types)
∣ 𝕋 × 𝕋 (product types)
∣ 𝕋 + 𝕋 (disjoint union types)

Typed Lambda Calculus 42/81



What is a Type?

Types as ranges of significance of propositional functions. Let 𝜑(𝑥) be a (unary)
propositional function. The type of 𝜑(𝑥) is the range within which 𝑥 must lie if 𝜑(𝑥) is to
be a proposition [Russell 1938, Appendix B: The Doctrine of Types].
In modern terminology, Rusell’s types are domains of propositional functions.
Example
Let 𝜑(𝑥) be the propositional function ‘𝑥 is a prime number’. Then 𝜑(𝑥) is a proposition
only when its argument is a natural number.

𝜑 ∶ ℕ → {False, True}
𝜑(𝑥) = 𝑥 is a prime number.
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What is a Type?

Hoare’s ‘Notes on Data Structuring’ [Hoare 1972, pp. 92-93]

“Thus there is a high degree of commonality in the use of the concept of type by
mathematicians, logicians and programmers. The salient characteristics of the concept of
type may be summarised:”

1. “A type determines the class of values which may be assumed by a variable or expres-
sion.”

2. “Every value belongs to one and only one type.”
3. “The type of a value denoted by any constant, variable, or expression may be deduced

from its form or context, without any knowledge of its value as computed at run time.”
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What is a Type?

Hoare’s ‘Notes on Data Structuring’ (cont.)

4. “Each operator expects operands of some fixed type, and delivers a result of some
fixed type (usually the same). Where the same symbol is applied to several different
types (e.g. + for addition of integers as well as reals), this symbol may be regarded
as ambiguous, denoting several different actual operators. The resolution of such
systematic ambiguity can always be made at compile time.”

5. “The properties of the values of a type and of the primitive operations defined over
them are specified by means of a set of axioms.”
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What is a Type?

Hoare’s ‘Notes on Data Structuring’ (cont.)

6. “Type information is used in a high-level language both to prevent or detect mean-
ingless constructions in a program, and to determine the method of representing and
manipulating data on a computer.”

7. “The types in which we are interested are those already familiar to mathematicians;
namely, Cartesian Products, Discriminated Unions, Sets, Functions, Sequences, and
Recursive Structures.”
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What is a Type?

The propositions-as-types principle (Curry-Howard correspondence)

Three correspondence’s levels [Wadler 2015]:
1. Propositions as types

“for each proposition in the logic there is a corresponding type in the programming
language—and vice versa”

2. Proofs as programs
“for each proof of a given proposition, there is a program of the corresponding
type—and vice versa”

3. Simplification of proofs as evaluation of programs
“for each way to simplify a proof there is a corresponding way to evaluate a
program—and vice versa”
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What is a Type?

“A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.”
[Kiselyov and Shan 2008, p. 8]
Homotopy Type Theory (HTT)
Propositions are types, but not all types are propositions (e.g. higher-order inductive
types)
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Encoding Data in the Lambda Calculus∗

∗[Paulson 2000, Ch. 3].



Constructors, Predicates and Selectors

Definitions ([Landin 1964, p. 310])

i) Constructors: ‘for constructing a CO∗ of given format from given components’.
ii) Predicates: ‘for testing which of the various alternative formats (if there are alternatives)

is possessed by a given CO’.
iii) Selectors: ‘for selecting the various components of a given CO once its format is known’.

∗CO: structured definitions or constructed objects
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Constructors, Predicates and Selectors

Definitions ([Hoare 1972, p. 94])

i) Constructors: ‘permit the value of a structured type to be defined in terms of the values
of the constituent types from which it is built.’

ii) Selectors: ‘permit access to the component values of a structured type.’

Example
Constructors, predicates and selectors for the list data type. Whiteboard.
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Booleans

Constructors
true ≡ K ≡ 𝜆𝑥𝑦.𝑥
false ≡ K∗ ≡ 𝜆𝑥𝑦.𝑦

Selector
if ≡ 𝜆𝑝𝑥𝑦.𝑝𝑥𝑦

Conversion rules
if true 𝑀𝑁 =𝛽 𝑀
if false 𝑀𝑁 =𝛽 𝑁

Remark
The above equations hold for all terms 𝑀 and 𝑁 (independently whether or not they have
𝛽-normal forms).
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Booleans

Some operations
and ≡ 𝜆𝑝𝑞.if 𝑝 𝑞 false

or ≡ 𝜆𝑝𝑞.if 𝑝 true 𝑞
not ≡ 𝜆𝑝.if 𝑝 false true
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Ordered Pairs

Constructor
pair ≡ 𝜆𝑥𝑦𝑓.𝑓𝑥𝑦

Selectors
fst ≡ 𝜆𝑝.𝑝 true

snd ≡ 𝜆𝑝.𝑝 false

Conversion rules
fst (pair 𝑀𝑁) =𝛽 𝑀

snd (pair 𝑀𝑁) =𝛽 𝑁

Remark
We can project any of the two components of pair 𝑀𝑁 (even if the other has no 𝛽-normal
form).
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Natural Numbers

Notation

𝑋0𝑌 ≡ 𝑌 ,
𝑋𝑛𝑌 ≡ 𝑋(𝑋(⋯ (𝑋⏟⏟⏟⏟⏟

𝑛 ‵𝑋′s

𝑌 ) ⋯)) if 𝑛 ≥ 1.

Church numerals

0 ≡ 𝜆𝑓𝑥.𝑥
1 ≡ 𝜆𝑓𝑥.𝑓𝑥
2 ≡ 𝜆𝑓𝑥.𝑓(𝑓𝑥)

⋮
𝑛 ≡ 𝜆𝑓𝑥.𝑓𝑛𝑥
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Natural Numbers

Constructors
zero ≡ 0 ≡ 𝜆𝑓𝑥.𝑥
succ ≡ 𝜆𝑛𝑓𝑥.𝑓(𝑛𝑓𝑥)

Predicate
isZero ≡ 𝜆𝑛.𝑛(𝜆𝑥.false) true

Conversion rules
succ 𝑛 =𝛽 𝑛 + 1

isZero 0 =𝛽 true
isZero 𝑛 + 1 =𝛽 false
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Natural Numbers

Some operations
add ≡ 𝜆𝑚𝑛𝑓𝑥.𝑚𝑓(𝑛𝑓𝑥)

mult ≡ 𝜆𝑚𝑛𝑓𝑥.𝑚(𝑛𝑓)𝑥
Conversion rules

add 𝑚 𝑛 =𝛽 𝑚 + 𝑛
mult 𝑚 𝑛 =𝛽 𝑚 × 𝑛
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Lists

Constructors
nil ≡ 𝜆𝑧.𝑧

cons ≡ 𝜆𝑥𝑦.pair false (pair 𝑥𝑦)
Selectors

head ≡ 𝜆𝑧.fst (snd 𝑧)
tail ≡ 𝜆𝑧.snd (snd 𝑧)

Conversion rules
head (cons 𝑀𝑁) =𝛽 𝑀

tail (cons 𝑀𝑁) =𝛽 𝑁
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Lists

Predicate
isNull ≡ fst

Conversion rules
isNull nil =𝛽 true

isNull (cons 𝑀𝑁) =𝛽 false
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Writing Recursive Functions

Example
Recursive functions:

fact 𝑁 ≡ if (isZero 𝑁) 1 (mult 𝑁(fact (pred 𝑁)))
append 𝑍𝑊 ≡ if (isNull 𝑍) 𝑊 (cons (head 𝑍)(append (tail 𝑍)𝑊))

zeros ≡ cons 0 zeros

Writing the above function using the Y combinator:

fact ≡ Y (𝜆𝑓𝑛.if (isZero 𝑛) 1 (mult 𝑛(𝑓(pred 𝑁))))
append ≡ Y (𝜆𝑓𝑧𝑤.if (isNull 𝑧) 𝑤 (cons (head 𝑧)(𝑓(tail 𝑧)𝑤)))

zeros ≡ Y (𝜆𝑓.cons 0 𝑓)
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ISWIM∗

∗[Paulson 2000, Ch. 6].



ISWIM: Lambda Calculus as a Programming Language

ISWIM: If you See What I Mean
Landin, P. J. [1966]. The Next 700 Programming
Languages. Communications of the ACM 9.3,
pp. 157–166. doi: 10.1145/365230.365257
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Local Declarations

Simple declaration
let 𝑥 = 𝑀 in 𝑁 ≡ (𝜆𝑥.𝑁)𝑀

Example
let 𝑛 = 0 in succ 𝑛
let 𝑚 = 0 in (let 𝑛 = 1 in add 𝑚 𝑛)
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Local Declarations

Function declaration
let 𝑓𝑥1 ⋯ 𝑥𝑘 = 𝑀 in 𝑁 ≡ (𝜆𝑓.𝑁)(𝜆𝑥1 ⋯ 𝑥𝑘.𝑀)

Example
let succ 𝑛 = 𝜆𝑓𝑥.𝑓(𝑛𝑓𝑥) in succ 0
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Local Declarations

Function declaration
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Local Declarations

Recursive declaration
letrec 𝑓𝑥1 ⋯ 𝑥𝑘 = 𝑀 in 𝑁 ≡ (𝜆𝑓.𝑁)(Y(𝜆𝑓𝑥1 ⋯ 𝑥𝑘.𝑀))

Example
letrec fact 𝑛 = if (isZero 𝑁) 1 (mult 𝑁(fact (pred 𝑁))) in fact 5
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