
Coq au vin
The Coq proof assistant and the Curry-Howard correspondence

Juan Pedro Villa-Isaza
jvillais@eafit.edu.co

Universidad EAFIT

June 8, 2011



Outline

Introduction
The Coq proof assistant
The Curry-Howard correspondence

Propositional logic

Predicate logic

Proof irrelevance



Introduction
Coq au vin

Coq au vin
(Chicken in red wine with onions, mushrooms, and bacon)

I This popular dish may be called coq au Chambertin, coq au
riesling, or coq au whatever wine you use for its cooking.

I It is made with either white or red wine, but the red is more
characteristic.

I Serve with it a young, full-bodied red Burgundy, Beaujolais, or
Côtes du Rhône.

Simone Beck, Louisette Bertholle, and Julia Child.
Mastering the Art of French Cooking.
Alfred A. Knopf, 1966.



Introduction
The Coq proof assistant

Coq
(http://coq.inria.fr/)

I The Coq system is a computer tool for verifying theorem
proofs.

I Its underlying theory is a logical framework known as the
Calculus of Inductive Constructions.

I The Coq language is extremely powerful and expressive, both
for reasoning and for programming.

http://coq.inria.fr/


Introduction
The Curry-Howard correspondence

The Curry-Howard (propositions-as-types, formulas-as-types,
proofs-as-programs) correspondence (isomorphism)

I The Curry-Howard isomorphism states an amazing
correspondence between systems of formal logic and
computational calculi.

I It begins with the observation that an implication A → B
corresponds to a type of functions from A to B.

I A constructive proof of an implication from A to B is a
procedure that transforms proofs of A into proofs of B.

I An implicational formula is an intuitionistic theorem if and
only if it is an inhabited type.



Introduction
The Curry-Howard correspondence

I Provable theorems are nothing else than non-empty types.
I Virtually all proof-related concepts can be interpreted in terms

of computations, and vice versa.
I The Curry-Howard isomorphism is not merely a curiosity, but

a fundamental principle.
I “Programs viewed as proofs” and “proofs viewed as programs.”



Introduction
The Curry-Howard correspondence

logic λ-calculus
formula type

propositional variable type variable
connective type constructor
implication function space
conjunction product
disjunction disjoint sum
absurdity empty type
proof term

assumption object variable
introduction constructor
elimination destructor
provability inhabitation



Introduction
Coq and the Curry-Howard correspondence

I Two approaches can be followed to solve the problem of
proving the formula

(P =⇒ Q) =⇒ ((Q =⇒ R) =⇒ (P =⇒ R)).

1. Building a truth table (classical logic).
2. Replacing the question “is the proposition P true?” with the

question “what are the proofs of P (if any)?” (intuitionistic
logic).

I The Coq system follows this approach.

I If we consider some proof as an expression in a functional
language, then the proven statement is a type (the type of
proofs for this statement).



Introduction
Coq and the Curry-Howard correspondence

I Thanks to the Curry-Howard correspondence, we can use
programming ideas during proof tasks and logical ideas during
program design.

I The implication P =⇒ Q becomes the arrow type P → Q.
(P → Q) → (Q → R) → P → R

I A proof of this statement is a λ-term whose type is this
proposition.
fun (H1 : P -> Q) (H2 : Q -> R) (p : P) => H2 (H1 p)

I Building proofs and programs are very similar activities, but
there is one important difference: proof irrelevance.



“Averting your face, ignite the cognac with a lighted match.”



Propositional logic
Propositions and proofs

I The coexistence of programs and proofs (and specifications
and propositions) is made possible by the Prop sort for
propositions and proofs.

I Hypotheses (local declarations) and axioms (global
declarations).

E , Γ ` π : P
I Taking into account the axioms in the environment E and the

hypotheses in the context Γ, π is a proof of the proposition P.
I Theorems and lemmas (global definitions).



Propositional logic
Goals and tactics

I Proof terms can become very complex...
I The Coq system provides a suite of tools to help in their

construction.
I Working model:

1. The user states the proposition that needs to be proved (goal).
2. The user applies commands (tactics) to decompose the goal

into simpler goals or solve it. This process ends when all
subgoals are completely solved.



Propositional logic
Tactics

I The tactic apply term tries to match the current goal against
the conclusion of the type of term...

I The tactic absurd term applies False elimination...
I The tactic constructor num applies to a goal such that the

head of its conclusion is an inductive constant.
I The tactic elim chooses the appropiate destructor and applies

it as the tactic apply would do.
I ...



Propositional logic
Example

(P → Q) → (Q → R) → P → R

I Declaring propositional variables (Hypothesis and
Hypotheses).

Coq < Section Propositional_logic.

Coq < Hypothesis P : Prop.
P is assumed
Coq < Hypothesis Q : Prop.
Q is assumed

Coq < Hypotheses R S : Prop.
R is assumed
S is assumed



Propositional logic
Example

I Activating goal-directed proofs (Theorem).

Coq < Theorem imp_trans : (P -> Q) -> (Q -> R) -> P -> R.
1 subgoal

P : Prop
Q : Prop
R : Prop
S : Prop
============================
(P -> Q) -> (Q -> R) -> P -> R



Propositional logic
Example

I Introducing new hypotheses (intro and intros).

imp_trans < intro H1.
1 subgoal

P : Prop
Q : Prop
R : Prop
S : Prop
H1 : P -> Q
============================
(Q -> R) -> P -> R

imp_trans < intros H2 p.
1 subgoal

P : Prop
Q : Prop
R : Prop
S : Prop
H1 : P -> Q
H2 : Q -> R
p : P
============================
R



Propositional logic
Example

I Applying a hypothesis (apply).

imp_trans < apply H2.
1 subgoal

P : Prop
Q : Prop
R : Prop
S : Prop
H1 : P -> Q
H2 : Q -> R
p : P
============================
Q

imp_trans < apply H1.
1 subgoal

P : Prop
Q : Prop
R : Prop
S : Prop
H1 : P -> Q
H2 : Q -> R
p : P
============================
P



Propositional logic
Example

I Using a hypothesis (assumption).

imp_trans < assumption.
Proof completed.

I Building and solving the proof term (Qed).

imp_trans < Qed.
intro H1.
intros H2 p.
apply H2.
apply H1.
assumption.

imp_trans is defined



Propositional logic
Example

I Printing the proof term (Print).

Coq < Print imp_trans.
imp_trans =
fun (H1 : P -> Q) (H2 : Q -> R) (p : P) => H2 (H1 p)

: (P -> Q) -> (Q -> R) -> P -> R

I Agda:

imp_trans : {P Q R : Set} -> (P -> Q) -> (Q -> R) -> P -> R
imp_trans H1 H2 p = H2 (H1 p)



Propositional logic
Example

I A one-shot tactic (auto).

Theorem imp_trans : (P -> Q) -> (Q -> R) -> P -> R.
Proof.

auto.
Qed.



“Decorate with sprigs of parsley.”



Propositional logic
Implication (function space)

Introduction rule:

Γ,A ` B (→I)
Γ ` A → B

Elimination rule:

Γ ` A → B Γ ` A (→E)
Γ ` B



Propositional logic
Conjunction (product)

Introduction rule:

Γ ` A Γ ` B (∧I)
Γ ` A ∧ B

Elimination rules:

Γ ` A ∧ B (∧E1)Γ ` A

Γ ` A ∧ B (∧E2)Γ ` B



Propositional logic
Product (conjunction)

Inductive and (A B : Prop) : Prop := conj : A -> B -> A /\ B

proj1 =
fun (A B : Prop) (H : A /\ B) => match H with

| conj H0 _ => H0
end

: forall A B : Prop, A /\ B -> A

proj2 =
fun (A B : Prop) (H : A /\ B) => match H with

| conj _ H1 => H1
end

: forall A B : Prop, A /\ B -> B



Propositional logic
Disjunction (disjoint sum)

Introduction rules:

Γ ` A (∨I1)Γ ` A ∨ B

Γ ` B (∨I2)Γ ` A ∨ B

Elimination rule:

Γ ` A ∨ B Γ,A ` C Γ,B ` C (∨E)
Γ ` C



Propositional logic
Disjoint sum (disjunction)

Inductive or (A B : Prop) : Prop :=
or_introl : A -> A \/ B | or_intror : B -> A \/ B

or_ind =
fun (A B P : Prop) (f : A -> P) (f0 : B -> P) (o : A \/ B) =>
match o with
| or_introl x => f x
| or_intror x => f0 x
end

: forall A B P : Prop, (A -> P) -> (B -> P) -> A \/ B -> P



Propositional logic
Absurdity (empty type)

Elimination rule:

Γ ` ⊥ (⊥E)
Γ ` A



Propositional logic
Empty type (absurdity)

Inductive False : Prop :=

False_ind = fun P : Prop => False_rect P
: forall P : Prop, False -> P



Propositional logic
True

Inductive True : Prop := I : True



Propositional logic
Negation

not = fun A : Prop => A -> False
: Prop -> Prop



Propositional logic
Bi-implication

iff = fun A B : Prop => (A -> B) /\ (B -> A)
: Prop -> Prop -> Prop



Propositional logic
Example (1)

Theorem example1 : forall A : Prop, A -> ~ ~ A.
Proof.

unfold not.
intros A a H.
apply H.
assumption.

Qed.

example1 =
fun (A : Prop) (a : A) (H : A -> False) => H a

: forall A : Prop, A -> ~ ~ A



Propositional logic
Example (2)

Lemma example2_1 : forall A B C : Prop,
A /\ (B \/ C) -> A /\ B \/ A /\ C.

Proof.
intros A B C H1.
elim H1.
intros a H2.
elim H2.

intro b.
constructor 1.
constructor.

assumption.
assumption.

auto.
Qed.

Lemma example2_2 : forall A B C : Prop,
A /\ B \/ A /\ C -> A /\ (B \/ C).



Propositional logic
Example (2)

example2_1 =
fun (A B C : Prop) (H1 : A /\ (B \/ C)) =>
and_ind

(fun (a : A) (H2 : B \/ C) =>
or_ind (fun b : B => or_introl (A /\ C) (conj a b))

(fun H : C => or_intror (A /\ B) (conj a H)) H2) H1
: forall A B C : Prop, A /\ (B \/ C) -> A /\ B \/ A /\ C



Propositional logic
Example (2)

Theorem example2 : forall A B C : Prop,
A /\ (B \/ C) <-> A /\ B \/ A /\ C.

Proof.
intros A B C.
unfold iff.
constructor.

exact (example2_1 A B C).
apply example2_2.

Qed.

example2 =
fun A B C : Prop => conj (example2_1 A B C) (example2_2 A B C)

: forall A B C : Prop, A /\ (B \/ C) <-> A /\ B \/ A /\ C



Predicate logic
Universal quantification

all =
fun (A : Type) (P : A -> Prop) => forall x : A, P x

: forall A : Type, (A -> Prop) -> Prop



Predicate logic
Existential quantification

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex_intro : forall x : A, P x -> ex P



Proof irrelevance

I When developing a program for a specification, two programs
may not be considered completely equivalent.

I When considering proofs, two proofs of a proposition play
exactly the same role.

I “Proof irrelevance” asserts equality of all proofs of a given
formula.

Axiom proof_irrelevance : forall (P:Prop) (p1 p2:P), p1 = p2.

“The end justifies the means”?



Proof irrelevance

Lemma lemma7_1 : forall P Q : Prop, (P -> Q) -> (P -> P -> Q).
Proof.

intros P Q H _.
assumption.

Qed.

Lemma lemma7_2 : forall P Q : Prop, (P -> Q) -> (P -> P -> Q).
Proof.

intros P Q H p1 p2.
apply H.
assumption.

Qed.

Lemma lemma7_12 : lemma7_1 = lemma7_2.
Proof.

apply proof_irrelevance.
Qed.



Summary

I The Coq proof assistant.
I The Curry-Howard correspondence.
I Coq and the Curry-Howard correspondence.
I The computational aspects of logical systems (proofs viewed

as programs).
I Proof irrelevance.



The firebird

(Coq’Art)



References
The Coq proof assistant

The Coq Development Team.
The Coq Proof Assistant.
http://coq.inria.fr/.

Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring.
The Coq Proof Assistant. A Tutorial.

Eduardo Giménez and Pierre Castéran.
A Tutorial on [Co-]Inductive Types in Coq.

Yves Bertot and Pierre Castéran.
Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions.
Springer, 2004.

http://coq.inria.fr/


References
The Curry-Howard correspondence

Morten Heine Sørensen and Paweł Urzyczyn.
Lectures on the Curry-Howard Isomorphism.
Elsevier, 2006.



(Warner Bros.)

“Th-th-th-that’s all, folks!”


	Introduction
	The Coq proof assistant
	The Curry-Howard correspondence

	Propositional logic
	Predicate logic
	Proof irrelevance
	Summary
	References

