Coq au vin

The Coq proof assistant and the Curry-Howard correspondence

Juan Pedro Villa-Isaza jvillais@eafit.edu.co

Universidad EAFIT

June 8, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Introduction The Coq proof assistant The Curry-Howard correspondence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Propositional logic

Predicate logic

Proof irrelevance

Coq au vin

Coq au vin

(Chicken in red wine with onions, mushrooms, and bacon)

- ► This popular dish may be called *coq au Chambertin, coq au riesling*, or *coq au* whatever wine you use for its cooking.
- It is made with either white or red wine, but the red is more characteristic.
- Serve with it a young, full-bodied red Burgundy, Beaujolais, or Côtes du Rhône.

Simone Beck, Louisette Bertholle, and Julia Child. Mastering the Art of French Cooking. Alfred A. Knopf, 1966.

The Coq proof assistant

- The Coq system is a computer tool for verifying theorem proofs.
- Its underlying theory is a logical framework known as the Calculus of Inductive Constructions.
- The Coq language is extremely powerful and expressive, both for reasoning and for programming.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Curry-Howard correspondence

The Curry-Howard (propositions-as-types, formulas-as-types, proofs-as-programs) correspondence (isomorphism)

- The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic and computational calculi.
- It begins with the observation that an implication A → B corresponds to a type of functions from A to B.
 - ► A constructive proof of an implication from *A* to *B* is a procedure that transforms proofs of *A* into proofs of *B*.
 - An implicational formula is an intuitionistic theorem if and only if it is an inhabited type.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Curry-Howard correspondence

- Provable theorems are nothing else than non-empty types.
- Virtually all proof-related concepts can be interpreted in terms of computations, and vice versa.
- The Curry-Howard isomorphism is not merely a curiosity, but a fundamental principle.
- "Programs viewed as proofs" and "proofs viewed as programs."

The Curry-Howard correspondence

_

logic	λ -calculus
formula	type
propositional variable	type variable
connective	type constructor
implication	function space
conjunction	product
disjunction	disjoint sum
absurdity	empty type
proof	term
assumption	object variable
introduction	constructor
elimination	destructor
provability	inhabitation

Coq and the Curry-Howard correspondence

Two approaches can be followed to solve the problem of proving the formula

$$(P \implies Q) \implies ((Q \implies R) \implies (P \implies R)).$$

- 1. Building a truth table (classical logic).
- Replacing the question "is the proposition P true?" with the question "what are the proofs of P (if any)?" (intuitionistic logic).
 - The Coq system follows this approach.
- If we consider some proof as an expression in a functional language, then the proven statement is a type (the type of proofs for this statement).

Coq and the Curry-Howard correspondence

- Thanks to the Curry-Howard correspondence, we can use programming ideas during proof tasks and logical ideas during program design.
- The implication $P \implies Q$ becomes the arrow type $P \rightarrow Q$.

$$(P
ightarrow Q)
ightarrow (Q
ightarrow R)
ightarrow P
ightarrow R$$

A proof of this statement is a λ-term whose type is this proposition.

fun (H1 : P \rightarrow Q) (H2 : Q \rightarrow R) (p : P) \Rightarrow H2 (H1 p)

Building proofs and programs are very similar activities, but there is one important difference: proof irrelevance. "Averting your face, ignite the cognac with a lighted match."

Propositions and proofs

- The coexistence of programs and proofs (and specifications and propositions) is made possible by the Prop sort for propositions and proofs.
- Hypotheses (local declarations) and axioms (global declarations).

$$E, \Gamma \vdash \pi : P$$

- Taking into account the axioms in the environment E and the hypotheses in the context Γ, π is a proof of the proposition P.
- Theorems and lemmas (global definitions).

Goals and tactics

- Proof terms can become very complex...
- The Coq system provides a suite of tools to help in their construction.
- Working model:
 - 1. The user states the proposition that needs to be proved (goal).
 - 2. The user applies commands (*tactics*) to decompose the goal into simpler goals or solve it. This process ends when all subgoals are completely solved.

Tactics

- The tactic apply term tries to match the current goal against the conclusion of the type of term...
- The tactic absurd term applies False elimination...
- The tactic constructor num applies to a goal such that the head of its conclusion is an inductive constant.
- The tactic elim chooses the appropriate destructor and applies it as the tactic apply would do.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R$$

 Declaring propositional variables (Hypothesis and Hypotheses).

Coq < Section Propositional_logic.

```
Coq < Hypothesis P : Prop.
P is assumed
Coq < Hypothesis Q : Prop.
Q is assumed
Coq < Hypotheses R S : Prop.
R is assumed
```

S is assumed

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Activating goal-directed proofs (Theorem).

Coq < Theorem imp_trans : (P -> Q) -> (Q -> R) -> P -> R. 1 subgoal

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- P : Prop
- Q : Prop
- R : Prop
- S : Prop

 $(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R$

Introducing new hypotheses (intro and intros).

```
imp_trans < intro H1.</pre>
                                      imp_trans < intros H2 p.</pre>
1 subgoal
                                      1 subgoal
 P : Prop
                                       P : Prop
 Q : Prop
                                       Q : Prop
 R : Prop
                                       R : Prop
 S : Prop
                                       S : Prop
 H1 : P -> Q
                                       H1 : P -> Q
                                       H2 : Q -> R
  _____
   (Q \rightarrow R) \rightarrow P \rightarrow R
                                        p : P
                                        _____
```

R

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example

Applying a hypothesis (apply).

```
imp_trans < apply H2.</pre>
                                 imp_trans < apply H1.</pre>
1 subgoal
                                 1 subgoal
 P : Prop
                                   P : Prop
 Q : Prop
                                   Q : Prop
 R : Prop
                                   R : Prop
 S : Prop
                                   S : Prop
 H1 : P -> Q
                                   H1 : P -> Q
 H2 : Q -> R
                                   H2 : Q -> R
 p : P
                                   р: Р
 _____
                                      _____
                                    Ρ
  Q
```

Example

Using a hypothesis (assumption).

imp_trans < assumption.
Proof completed.</pre>

Building and solving the proof term (Qed).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
imp_trans < Qed.
intro H1.
intros H2 p.
apply H2.
apply H1.
assumption.
```

imp_trans is defined

```
Propositional logic
Example
```

Printing the proof term (Print).

Coq < Print imp_trans. imp_trans = fun (H1 : P -> Q) (H2 : Q -> R) (p : P) => H2 (H1 p) : (P -> Q) -> (Q -> R) -> P -> R

Agda:

imp_trans : {P Q R : Set} -> (P -> Q) -> (Q -> R) -> P -> R imp_trans H1 H2 p = H2 (H1 p)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

A one-shot tactic (auto).

Theorem imp_trans : (P -> Q) -> (Q -> R) -> P -> R. Proof.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

auto.

Qed.

"Decorate with sprigs of parsley."

Implication (function space)

Introduction rule:

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} (\to \mathsf{I})$$

Elimination rule:

$$\frac{\Gamma \vdash A \to B \qquad \Gamma \vdash A}{\Gamma \vdash B} (\to \mathsf{E})$$

(ロ)、(型)、(E)、(E)、 E) の(()

Conjunction (product)

Introduction rule:

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} (\land \mathsf{I})$$

Elimination rules:

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} (\land \mathsf{E}_1)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (\land \mathsf{E}_2)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Propositional logic Product (conjunction)

```
Inductive and (A B : Prop) : Prop := conj : A \rightarrow B \rightarrow A /\ B
proj1 =
fun (A B : Prop) (H : A /\setminus B) => match H with
                                        | conj H0 _ => H0
                                       end
      : forall A B : Prop, A /\setminus B -> A
proj2 =
fun (A B : Prop) (H : A /\setminus B) => match H with
                                        | conj _ H1 => H1
                                       end
      : forall A B : Prop, A /\setminus B -> B
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Disjunction (disjoint sum)

Introduction rules:

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (\lor \mathsf{I}_1)$$

$$\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (\lor \mathsf{I}_2)$$

Elimination rule:

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} (\lor E)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Propositional logic Disjoint sum (disjunction)

```
Inductive or (A B : Prop) : Prop :=
    or_introl : A -> A \/ B | or_intror : B -> A \/ B
or_ind =
fun (A B P : Prop) (f : A -> P) (f0 : B -> P) (o : A \/ B) =>
match o with
| or_introl x => f x
| or_intror x => f0 x
end
    : forall A B P : Prop, (A -> P) -> (B -> P) -> A \/ B -> P
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Absurdity (empty type)

Elimination rule:

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash A} (\bot \mathsf{E})$$

(ロ)、(型)、(E)、(E)、 E) の(()

Propositional logic Empty type (absurdity)

Inductive False : Prop :=

False_ind = fun P : Prop => False_rect P
 : forall P : Prop, False -> P

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Inductive True : Prop := I : True

Negation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Bi-implication

iff = fun A B : Prop => (A -> B) /\ (B -> A) : Prop -> Prop -> Prop

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

```
Propositional logic
Example (1)
```

```
Theorem example1 : forall A : Prop, A -> ~ ~ A.
Proof.
    unfold not.
    intros A a H.
    apply H.
    assumption.
Qed.
example1 =
fun (A : Prop) (a : A) (H : A -> False) => H a
        : forall A : Prop, A -> ~ ~ A
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Example (2)

```
Lemma example2_1 : forall A B C : Prop,
                    A / (B / C) \rightarrow A / B / A / C.
Proof.
  intros A B C H1.
  elim H1.
  intros a H2.
  elim H2.
    intro b.
    constructor 1.
    constructor.
  assumption.
  assumption.
 auto.
Qed.
Lemma example2_2 : forall A B C : Prop,
```

 $A / B / A / C \rightarrow A / (B / C).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

```
example2_1 =
fun (A B C : Prop) (H1 : A /\ (B \/ C)) =>
and_ind
  (fun (a : A) (H2 : B \/ C) =>
    or_ind (fun b : B => or_introl (A /\ C) (conj a b))
      (fun H : C => or_intror (A /\ B) (conj a H)) H2) H1
      : forall A B C : Prop, A /\ (B \/ C) -> A /\ B \/ A /\ C
```

```
Theorem example2 : forall A B C : Prop,
                   A / (B / C) <-> A / B / A / C.
Proof.
 intros A B C.
 unfold iff.
  constructor.
    exact (example2_1 A B C).
    apply example2_2.
Qed.
example2 =
fun A B C : Prop => conj (example2_1 A B C) (example2_2 A B C)
     : forall A B C : Prop, A /\ (B \/ C) <-> A /\ B \/ A /\ C
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Predicate logic

Universal quantification

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Predicate logic

Existential quantification

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
 ex_intro : forall x : A, P x -> ex P

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof irrelevance

- When developing a program for a specification, two programs may not be considered completely equivalent.
- When considering proofs, two proofs of a proposition play exactly the same role.
- "Proof irrelevance" asserts equality of all proofs of a given formula.

Axiom proof_irrelevance : forall (P:Prop) (p1 p2:P), p1 = p2.

"The end justifies the means"?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof irrelevance

```
Lemma lemma7_1 : forall P Q : Prop, (P \rightarrow Q) \rightarrow (P \rightarrow P \rightarrow Q).
Proof.
  intros P Q H _.
  assumption.
Qed.
Lemma lemma7_2 : forall P Q : Prop, (P \rightarrow Q) \rightarrow (P \rightarrow P \rightarrow Q).
Proof.
  intros P Q H p1 p2.
  apply H.
  assumption.
Qed.
Lemma lemma7_12 : lemma7_1 = lemma7_2.
Proof.
  apply proof_irrelevance.
Qed.
```

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Summary

- The Coq proof assistant.
- The Curry-Howard correspondence.
- Coq and the Curry-Howard correspondence.
- The computational aspects of logical systems (proofs viewed as programs).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof irrelevance.

The firebird

(Coq'Art)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

References

The Coq proof assistant

The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr/.

- Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq Proof Assistant. A Tutorial.
 - Eduardo Giménez and Pierre Castéran. A Tutorial on [Co-]Inductive Types in Coq.
- Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development. Coq'Art: The Calculus of Inductive Constructions. Springer, 2004.

References

The Curry-Howard correspondence

Morten Heine Sørensen and Paweł Urzyczyn. *Lectures on the Curry-Howard Isomorphism*. Elsevier, 2006.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(Warner Bros.)

"Th-th-that's all, folks!"

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●