CM0889 Analysis of Algorithms Appendix

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2020-2

Induction

Principle of Mathematical Induction

Let $P(n)$ be a property on natural numbers n, and let a be a fixed natural number. If
(i) $P(a)$ is true and
(ii) for every natural number $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true, then
(iii) $P(n)$ is true for all natural numbers $n \geq a$.

Induction

Principle of Strong Induction

Let $P(n)$ be a property on natural numbers n, and let a be a fixed natural number.
If
(i) $P(a)$ is true and
(ii) for every natural number $k \geq a$, if $P(i)$ is true for $a \leq i \leq k$, then $P(k+1)$ is true, then
(iii) $P(n)$ is true for all natural numbers $n \geq a$.

Remark

Other names: Principle of complete induction and principle of course-of-values induction.

Induction

Theorem

The principle of mathematical induction and the principle of strong induction are equivalents.

Floor and Ceiling Functions

Definition
The floor function is defined by

$$
\begin{aligned}
& \lfloor\cdot\rfloor: \mathbb{R} \rightarrow \mathbb{Z} \\
& \lfloor x\rfloor:=\text { largest integer less than or equal to } x .
\end{aligned}
$$

Example

$$
\begin{aligned}
\lfloor 42\rfloor & =42 \\
\lfloor 5.42\rfloor & =5 \\
\lfloor-5.52\rfloor & =-6 .
\end{aligned}
$$

Floor and Ceiling Functions

Definition
The ceiling function is defined by

$$
\begin{aligned}
& \lceil\cdot\rceil: \mathbb{R} \rightarrow \mathbb{Z} \\
& \lceil x\rceil:=\text { smallest integer greater than or equal to } x .
\end{aligned}
$$

Example

$$
\begin{aligned}
\lceil 42\rceil & =42, \\
\lceil 5.42\rceil & =6, \\
\lceil-5.52\rceil & =-5 .
\end{aligned}
$$

Logarithms

Definition
For any fixed real number $b>1$,

$$
\begin{gathered}
\log _{b}: \mathbb{R}^{+} \rightarrow \mathbb{R} \\
\log _{b} x=y \quad \text { iff } \quad b^{y}=x
\end{gathered}
$$

Logarithms

Definition

For any fixed real number $b>1$,

$$
\begin{gathered}
\log _{b}: \mathbb{R}^{+} \rightarrow \mathbb{R} \\
\log _{b} x=y \quad \text { iff } \quad b^{y}=x
\end{gathered}
$$

Notation

$\lg x$: Logarithm on base 2
$\ln x$: Logarithm on base e
$\log x$: Logarithm on base 10

Logarithms

Logarithmic functions $\lg x, \ln x, \log x$ and $\log _{1.8} x$

Logarithms

Properties

For any fixed real number $b>1$, for all $x, y \in \mathbb{R}^{+}$, and for all $z \in \mathbb{R}$:

$$
\begin{aligned}
\log _{b}(x y) & =\log _{b} x+\log _{b} y \\
\log _{b}(x / y) & =\log _{b} x-\log _{b} y, \\
\log _{b}\left(x^{z}\right) & =z \log _{b} x
\end{aligned}
$$

Logarithms

Properties

For all real numbers a and b greater than 1 and for all $x \in \mathbb{R}^{+}$:

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

Logarithms

Properties
For all real numbers a and b greater than 1 , for all $x \in \mathbb{R}^{+}$, if $a<b$ then

$$
\log _{a} x>\log _{b} x
$$

Summations

Definition

Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of numbers, where n is a positive integer. Recall the recursive definition of the summation notation:

$$
\begin{aligned}
\sum_{k=1}^{1} a_{k} & :=a_{1} \\
\sum_{k=1}^{n} a_{k} & :=\left(\sum_{k=1}^{n-1} a_{k}\right)+a_{n} \\
& =a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}
\end{aligned}
$$

Summations

Properties

$$
\begin{aligned}
\sum_{k=1}^{n}\left(a_{k}+b_{k}\right) & =\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k} & & \text { (additive property) } \\
\sum_{k=1}^{n} c a_{k} & =c \sum_{k=1}^{n} a_{k} & & \text { (homogeneous property) } \\
\sum_{k=1}^{n}\left(\alpha a_{k}+\beta b_{k}\right) & =\alpha \sum_{k=1}^{n} a_{k}+\beta \sum_{k=1}^{n} b_{k} & & \text { (linearity property). }
\end{aligned}
$$

Summations

Properties

$$
\begin{aligned}
\sum_{k=1}^{n} f(n) & =n f(n) \\
\sum_{k=1}^{n} a_{k} & =\sum_{k=1}^{i} a_{k}+\sum_{k=i+1}^{n} a_{k}
\end{aligned}
$$

Summations

Properties

$$
\begin{aligned}
\sum_{k=1}^{n} k & =\frac{n(n+1)}{2} \\
\sum_{k=1}^{n} k^{2} & =\frac{n(n+1)(2 n+1)}{6} \\
\sum_{k=1}^{n} k^{3} & =\left(\frac{n(n+1)}{2}\right)^{2}
\end{aligned}
$$

