
CM0889 Analysis of Algorithms
Algorithm Analysis

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2020-2



Preliminaries

Conventions
The number assigned to chapters, examples, exercises, figures, sections, or theorems on
these slides correspond to the numbers assigned in the textbook [Skiena 2012].

The source code examples are in course’s repository.

Algorithm Analysis 2/47



Introduction

Definition
The computational complexity of an algorithm is the amount of resources (e.g. time and
space) required to execute it.

Definition
The analysis of algorithms—term coined by Donald Knuth—is the study of the computational
complexity of algorithms.

Convention
For us ‘the complexity of an algorithm’ means the time computational complexity of the al-
gorithm.

Algorithm Analysis 3/47



Introduction

Definition
The computational complexity of an algorithm is the amount of resources (e.g. time and
space) required to execute it.

Definition
The analysis of algorithms—term coined by Donald Knuth—is the study of the computational
complexity of algorithms.

Convention
For us ‘the complexity of an algorithm’ means the time computational complexity of the al-
gorithm.

Algorithm Analysis 4/47



Introduction

Two abstractions
For the analysis of algorithms we required two abstractions:

(i) Where do the algorithms run? In a theoretical computer, i.e., we are interested in machine-
independent algorithms.

(ii) Which complexity are we interested? We are interested in asymptotic complexity, i.e., we
are interested in the behaviour of the algorithm for large values of the input.

Algorithm Analysis 5/47



Introduction

Two abstractions
For the analysis of algorithms we required two abstractions:

(i) Where do the algorithms run? In a theoretical computer, i.e., we are interested in machine-
independent algorithms.

(ii) Which complexity are we interested? We are interested in asymptotic complexity, i.e., we
are interested in the behaviour of the algorithm for large values of the input.

Algorithm Analysis 6/47



The RAM Model of Computation

See Skiena’s lecture slides: Asymptotic Notation

Algorithm Analysis 7/47



Best, Worst and Average-Case Complexity

The running time function
If the running time of an algorithm depends of the input then it usually means it depends of the
size of the input.

So, we shall use a function
T (n) : N → R≥0

which will denote the running time of an algorithm on inputs of size n.

Algorithm Analysis 8/47



Best, Worst and Average-Case Complexity

Example
For a sorting algorithm the size of the input is the number of elements to sort.

Algorithm Analysis 9/47



Best, Worst and Average-Case Complexity

There complexity functions
Given an input of size n we can think in three complexity functions: best-case complexity, worst-
case complexity and average-case complexity.

See Skiena’s lecture slides: Asymptotic Notation

Algorithm Analysis 10/47



Asymptotic Notations: Big O

Definition
Let g : N → R≥0 be a function. We define the set of functions big O of g(n), denoted
by O(g(n)), by

O(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≤ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = O(g(n))’ and ‘f(n) is O(g(n))’ mean that f(n) ∈ O(g(n)).

Algorithm Analysis 11/47



Asymptotic Notations: Big O

Definition
Let g : N → R≥0 be a function. We define the set of functions big O of g(n), denoted
by O(g(n)), by

O(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≤ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = O(g(n))’ and ‘f(n) is O(g(n))’ mean that f(n) ∈ O(g(n)).

Algorithm Analysis 12/47



Asymptotic Notations: Big O

Definition (continuation)
If f(n) ∈ O(g(n)) then function g(n) is an upper bound on the growth rate of the function f(n).∗

(b)

n
n0

f .n/ D O.g.n//

f .n/

cg.n/

∗Figure source: Cormen, Leiserson, Rivest and Stein [2009, Fig. 3.1b].
Algorithm Analysis 13/47



Asymptotic Notations: Big O

Example
Let T (n) = 3n2 − 100n + 6. The function T (n) is O(n2) because choosing n0 = 1 and c = 3
we have that

3n2 − 100n + 6 ≤ cn2, for all n ≥ n0,

that is,
3n2 − 100n + 6 ≤ 3n2, for all n ≥ 1.

Algorithm Analysis 14/47



Asymptotic Notations: Big O

Exercise
Let T (n) = (n + 1)2. To prove that T (n) ∈ O(n2). Hint: Choose n0 = 1 and c = 4.

Question
If T (n) ∈ O(n2) then T (n) ∈ O(n3)? What about O(n4)?

Algorithm Analysis 15/47



Asymptotic Notations: Big O

Exercise
Let T (n) = (n + 1)2. To prove that T (n) ∈ O(n2). Hint: Choose n0 = 1 and c = 4.

Question
If T (n) ∈ O(n2) then T (n) ∈ O(n3)? What about O(n4)?

Algorithm Analysis 16/47



Asymptotic Notations: Big O

Example
Let T (n) = 6n2. The function T (n) is not O(n) because

6n2 > cn, when n > c.

Algorithm Analysis 17/47



Asymptotic Notations: Big O

Theorem
Let d be a natural number and T (n) a polynomial function of degree d, that is,

T : N → R

T (n) =
d∑

i=0
cin

i, with ci ∈ R and cd ̸= 0.

If cd > 0 then T (n) ∈ O(nd).∗

Example
T (n) = 42n3 + 1523n2 + 45728n is O(n3).

∗See, e.g. [Cormen, Leiserson, Rivest and Stein 2009].
Algorithm Analysis 18/47



Asymptotic Notations: Big O

Theorem
Let d be a natural number and T (n) a polynomial function of degree d, that is,

T : N → R

T (n) =
d∑

i=0
cin

i, with ci ∈ R and cd ̸= 0.

If cd > 0 then T (n) ∈ O(nd).∗

Example
T (n) = 42n3 + 1523n2 + 45728n is O(n3).

∗See, e.g. [Cormen, Leiserson, Rivest and Stein 2009].
Algorithm Analysis 19/47



Asymptotic Notations: Big O

Example
Since any constant is a polynomial of degree 0, any constant function is O(n0), i.e. O(1).

Remark
Note the missing variable in O(1).∗

∗We could use the λ-calculus notation, i.e. O(λn.1).
Algorithm Analysis 20/47



Asymptotic Notations: Big O

Example
Let T (n) = lg(7n2 + 4n). To prove that:
(i) T (n) is O(lg n).
(ii) T (n) is O(logb n), for any real number b > 1.
Adapted from [Vrajitoru and Knight 2014, Example 3.3.2.(c)].

Algorithm Analysis 21/47



Asymptotic Notations: Big O

Proof
i) Since

lg(7n2 + 4n) < lg(7n2 + 4n2)
= lg(11n2)
= lg 11 + 2 lg n

< lg n + 2 lg n, for n ≥ 12
= 3 lg n

then T (n) is O(lg n) by choosing n0 = 12 and c = 3.

Algorithm Analysis 22/47



Asymptotic Notations: Big O

Proof (continuation)
(ii) Case b < 2

Since lg n < logb n then T (n) is O(logb n) because it is O(lg n).

Algorithm Analysis 23/47



Asymptotic Notations: Big O

Proof (continuation)
(ii) Case b > 2

Because logb n < lg n we can not use the fact that T (n) is O(lg n) like in the case b < 2.

Now, since for n ≥ 12,

lg(7n2 + 4n) ≤ 3 lg n and lg n = lg b · logb n,

then T (n) is O(logb n) by choosing n0 = 12 and c = 3 · ⌈lg b⌉.

Algorithm Analysis 24/47



Asymptotic Notations: Big Ω

Definition
Let g : N → R≥0 be a function. We define the set of functions big Ω of g(n), denoted
by Ω(g(n)), by

Ω(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≥ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = Ω(g(n))’ and ‘f(n) is Ω(g(n))’ mean that f(n) ∈ Ω(g(n)).

Algorithm Analysis 25/47



Asymptotic Notations: Big Ω

Definition
Let g : N → R≥0 be a function. We define the set of functions big Ω of g(n), denoted
by Ω(g(n)), by

Ω(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≥ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = Ω(g(n))’ and ‘f(n) is Ω(g(n))’ mean that f(n) ∈ Ω(g(n)).

Algorithm Analysis 26/47



Asymptotic Notations: Big Ω

Definition (continuation)
If f(n) ∈ Ω(g(n)) then function g(n) is a lower bound on the growth rate of the function f(n).∗

(c)

n
n0

f .n/ D �.g.n//

f .n/

cg.n/

∗Figure source: Cormen, Leiserson, Rivest and Stein [2009, Fig. 3.1c].
Algorithm Analysis 27/47



Asymptotic Notations: Big Θ

Definition
Let g : N → R≥0 be a function. We define the set of functions big Θ of g(n), denoted
by Θ(g(n)), by

Θ(g(n)) := { f : N → R≥0 | there exist positive constants c1, c2 ∈ R+

and n0 ∈ Z+ such that
c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0 }.

Notation
Both ‘f(n) = Θ(g(n))’ and ‘f(n) is Θ(g(n))’ mean that f(n) ∈ Θ(g(n)).

Algorithm Analysis 28/47



Asymptotic Notations: Big Θ

Definition
Let g : N → R≥0 be a function. We define the set of functions big Θ of g(n), denoted
by Θ(g(n)), by

Θ(g(n)) := { f : N → R≥0 | there exist positive constants c1, c2 ∈ R+

and n0 ∈ Z+ such that
c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0 }.

Notation
Both ‘f(n) = Θ(g(n))’ and ‘f(n) is Θ(g(n))’ mean that f(n) ∈ Θ(g(n)).

Algorithm Analysis 29/47



Asymptotic Notations: Big Θ

Definition (continuation)
If f(n) ∈ Θ(g(n)) then function g(n) is a lower bound and an upper bound on the growth rate
of the function f(n).∗

n
n0

f .n/ D ‚.g.n//

f .n/

c1g.n/

c2g.n/

∗Figure source: Cormen, Leiserson, Rivest and Stein [2009, Fig. 3.1a].
Algorithm Analysis 30/47



The Tyranny of Growth Rate

Growing rates of some functions
Each operation takes one nanosecond (109 seconds). Figure 2.4 in the textbook.

n f(n) lgn n n lgn n2 2n n!
10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 3.63 ms
20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 1 ms 77.1 years
30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 1 sec 8.4 × 1015 yrs
40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 18.3 min
50 0.006 µs 0.05 µs 0.282 µs 2.5 µs 13 days

100 0.007 µs 0.1 µs 0.644 µs 10 µs 4 × 1013 yrs
1,000 0.010 µs 1.00 µs 9.966 µs 1 ms
10,000 0.013 µs 10 µs 130 µs 100 ms
100,000 0.017 µs 0.10 ms 1.67 ms 10 sec
1,000,000 0.020 µs 1 ms 19.93 ms 16.7 min
10,000,000 0.023 µs 0.01 sec 0.23 sec 1.16 days
100,000,000 0.027 µs 0.10 sec 2.66 sec 115.7 days
1,000,000,000 0.030 µs 1 sec 29.90 sec 31.7 years

Algorithm Analysis 31/47



The Tyranny of Growth Rate

Supercomputers
Machines from: www.top500.org (last updated: September 2020)
PetaFLOP (PFLOP): 1015 floating-point operations per second

Date Machine PFLOPs
2020-06 Fugaku 415.53
2019-06 Summit 148.60
2018-11 Summit 143.50
2018-06 Summit 122.30
2016-06 Sunway TaihuLight 93.01
2013-06 Tianhe-2 33.86
2012-06 Blue Gene/Q 16.32
2011-06 K computer 8.16

Algorithm Analysis 32/47

www.top500.org


The Tyranny of Growth Rate

Example (3-SAT problem)
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

A (propositional logic) formula F is in conjunctive normal form iff

F has the form F1 ∧ · · · ∧ Fn,

where each F1, . . . , Fn is a disjunction of literals.

3-SAT problem: To determine the satisfiability of a propositional formula in conjunctive normal
form where each disjunction of literals is limited to at most three literals.

The problem was proposed in Karp’s 21 NP-complete problems [Karp 1972].

Algorithm Analysis 33/47



The Tyranny of Growth Rate

Example (3-SAT problem)
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

A (propositional logic) formula F is in conjunctive normal form iff

F has the form F1 ∧ · · · ∧ Fn,

where each F1, . . . , Fn is a disjunction of literals.

3-SAT problem: To determine the satisfiability of a propositional formula in conjunctive normal
form where each disjunction of literals is limited to at most three literals.

The problem was proposed in Karp’s 21 NP-complete problems [Karp 1972].

Algorithm Analysis 34/47



The Tyranny of Growth Rate

Example (3-SAT problem)
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

A (propositional logic) formula F is in conjunctive normal form iff

F has the form F1 ∧ · · · ∧ Fn,

where each F1, . . . , Fn is a disjunction of literals.

3-SAT problem: To determine the satisfiability of a propositional formula in conjunctive normal
form where each disjunction of literals is limited to at most three literals.

The problem was proposed in Karp’s 21 NP-complete problems [Karp 1972].

Algorithm Analysis 35/47



The Tyranny of Growth Rate

Example (3-SAT problem)
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

A (propositional logic) formula F is in conjunctive normal form iff

F has the form F1 ∧ · · · ∧ Fn,

where each F1, . . . , Fn is a disjunction of literals.

3-SAT problem: To determine the satisfiability of a propositional formula in conjunctive normal
form where each disjunction of literals is limited to at most three literals.

The problem was proposed in Karp’s 21 NP-complete problems [Karp 1972].

Algorithm Analysis 36/47



The Tyranny of Growth Rate

Improvements on the time complexity of 3-SAT deterministic algorithmic ∗

O(1.32793n) Liu [2018]
O(1.3303n) Makino, Tamaki and Yamamoto [2011, 2013]
O(1.3334n) Moser and Scheder [2011]
O(1.439n) Kutzkov and Scheder [2010]
O(1.465n) Scheder [2008]
O(1.473n) Brueggemann and Kern [2004]
O(1.481n) Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou, Raghavan and

Schöning [2002]

(continued on next slide)
∗Main sources: Hertli [2011, 2015]. Last updated: July 2020.

Algorithm Analysis 37/47



The Tyranny of Growth Rate

Improvements on the time complexity of 3-SAT deterministic algorithmic (continuation)

O(1.497n) Schiermeyer [1996]
O(1.505n) Kullmann [1999]
O(1.6181n) Monien and Speckenmeyer [1979, 1985]
O(2n) Brute-force search

Algorithm Analysis 38/47



The Tyranny of Growth Rate

3-SAT simulation
Running 3-SAT times on different supercomputers using the faster deterministic algorithm,
i.e. T (1.32793n).

Date Machine PFLOPs n = 150 n = 200 n = 400
2020-06 Fugaku 415.53 7.2 sec 120.2 days 1.4 × 1024 yrs
2019-06 Summit 148.60 20.1 sec 336.1 days 4.0 × 1024 yrs
2018-11 Summit 143.50 20.8 sec 348.1 days 4.1 × 1024 yrs
2018-06 Summit 122.30 24.5 sec 1.1 yrs 4.8 × 1024 yrs
2016-06 Sunway

TaihuLight
93.01 32.2 sec 1.5 yrs 6.4 × 1024 yrs

2013-06 Tianhe-2 33.86 1.5 min 4.1 yrs 1.7 × 1025 yrs
2012-06 Blue

Gene/Q
16.32 3.1 min 8.4 yrs 3.6 × 1025 yrs

2011-06 K computer 8.16 6.1 min 16.8 yrs 7.3 × 1025 yrs
Algorithm Analysis 39/47



The Tyranny of Growth Rate

3-SAT simulation
Running 3-SAT times for different deterministic algorithms using the faster supercomputer,
i.e. 415.53 PFLOPs.

Complexity n = 150 n = 200 n = 400
T (1.32793n) 7.2 sec 120.2 days 1.4 × 1024 yrs
T (1.3303n) 9.4 sec 172.0 days 2.9 × 1024 yrs
T (1.3334n) 13.3 sec 273.5 days 7.3 × 1024 yrs
T (1.439n) 14.2 days 3.1 × 106 yrs 1.3 × 1038 yrs
T (1.465n) 209.1 days 1.1 × 108 yrs 1.7 × 104 yrs
T (2n) 1.1 × 1020 yrs 1.3 × 1035 yrs 2.0 × 1095 yrs

Algorithm Analysis 40/47



Dominance Relations

Example (informal)
See
http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/.

Algorithm Analysis 41/47

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/


Dominance Relations

Definition
Let f and g two functions. The function f dominates the function g, denoted f ≫ g, iff g(n)
becomes insignificant relative to f(n) as n approaches infinity, that is, limn→∞ g(n)/f(n) = 0.

Example

n! ≫ 2n ≫ n3 ≫ n2 ≫ n log n ≫ n ≫ log n ≫ 1.

Algorithm Analysis 42/47



Dominance Relations

Definition
Let f and g two functions. The function f dominates the function g, denoted f ≫ g, iff g(n)
becomes insignificant relative to f(n) as n approaches infinity, that is, limn→∞ g(n)/f(n) = 0.

Example

n! ≫ 2n ≫ n3 ≫ n2 ≫ n log n ≫ n ≫ log n ≫ 1.

Algorithm Analysis 43/47



References

Brueggemann, Tobias and Kern, Walter (2004). An Improved Deterministic Local Search Algorithm
for 3-SAT. Theoretical Computer Science 329.1–3, pp. 303–313. doi: 10.1016/j.tcs.2004.08.
002 (cit. on p. 37).
Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. and Stein, Clifford [1990] (2009).
Introduction to Algorithms. 3rd ed. MIT Press (cit. on pp. 13, 18, 19, 27, 30).
Dantsin, Evgeny, Goerdt, Andreas, Hirsch, Edward A., Kannan, Ravi, Kleinberg, Jon, Papadimitriou,
Christos, Raghavan, Prabhakar and Schöning, Uwe (2002). A Deterministic (2 − 2/(k + 1))n Al-
gorithm for k-SAT Based on Local Search. Theoretical Computer Science 289.1, pp. 69–83. doi:
10.1016/S0304-3975(01)00174-8 (cit. on p. 37).
Hertli, Timon (2011). 3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General.
In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS 2011).
IEEE, pp. 277–284. doi: 10.1109/FOCS.2011.22 (cit. on p. 37).
— (2015). Improved Exponential Algorithms for SAT and ClSP. PhD thesis. ETH Zurich. doi:
10.3929/ethz-a-010512781 (cit. on p. 37).

Algorithm Analysis 44/47

https://doi.org/10.1016/j.tcs.2004.08.002
https://doi.org/10.1016/j.tcs.2004.08.002
https://doi.org/10.1016/S0304-3975(01)00174-8
https://doi.org/10.1109/FOCS.2011.22
https://doi.org/10.3929/ethz-a-010512781


References
Karp, Richard M. (1972). Reducibility Among Combinatorial Problems. In: Complexity of Computer
Computations. Ed. by Miller, Raymond E. and Thatcher, James W. Plenum Press, pp. 85–103. doi:
10.1007/978-1-4684-2001-2_9 (cit. on pp. 33–36).
Kullmann, O. (1999). New Methods for 3-SAT Decision and Worst-Case Analysis. Theoretical
Computer Science 223.1–2, pp. 1–72. doi: 10.1016/S0304-3975(98)00017-6 (cit. on p. 38).
Kutzkov, Konstantin and Scheder, Dominik (2010). Using CSP to Improve Deterministic 3-SAT.
CoRR abs/1007.1166. url: https://arxiv.org/abs/1007.1166 (cit. on p. 37).
Liu, Sixue (2018). Chain, Generalization of Covering Code, and Deterministic Algorithm for k-SAT.
In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Ed.
by Chatzigiannakis, Ioannis, Kaklamanis, Christos, Marx, Dániel and Sannella, Donald. Vol. 107.
Leibniz International Proceedings in Informatics (LIPIcs), 88:1–88:13. doi: 10.4230/LIPIcs.
ICALP.2018.88 (cit. on p. 37).
Makino, Kazuhisa, Tamaki, Suguru and Yamamoto, Masaki (2011). Derandomizing HSSW Al-
gorithm for 3-SAT. In: Computing and Combinatorics (COCOON 2011). Ed. by Fu, Bin and Du,
Ding-Zhu. Vol. 6842. Lecture Notes in Computer Science. Springer, pp. 1–12. doi: 10.1007/978-
3-642-22685-4_1 (cit. on p. 37).

Algorithm Analysis 45/47

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/S0304-3975(98)00017-6
https://arxiv.org/abs/1007.1166
https://doi.org/10.4230/LIPIcs.ICALP.2018.88
https://doi.org/10.4230/LIPIcs.ICALP.2018.88
https://doi.org/10.1007/978-3-642-22685-4_1
https://doi.org/10.1007/978-3-642-22685-4_1


References
Makino, Kazuhisa, Tamaki, Suguru and Yamamoto, Masaki (2013). Derandomizing HSSW Al-
gorithm for 3-SAT. Algorithmica 67.2, pp. 112–124. doi: 10.1007/s00453-012-9741-4 (cit. on
p. 37).
Monien, B. and Speckenmeyer, E. (1979). 3-Satisfiability is Testable in O(1.62r) Steps. Tech. rep.
3/1979. Reihe Theoretische Informatik, Universität Gesamthochschule Paderborn (cit. on p. 38).
— (1985). Solving Satisfiability in less than 2n Steps. Discrete Applied Mathematics 10.3,
pp. 287–295. doi: 10.1016/0166-218X(85)90050-2 (cit. on p. 38).
Moser, Robin A. and Scheder, Dominik (2011). A Full Derandomization of Schöning’s k-SAT
Algorithm. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing
(STOC 2011), pp. 245–252. doi: 10.1145/1993636.1993670 (cit. on p. 37).
Scheder, Dominik (2008). Guided Search and a Faster Deterministic Algorithm for 3-SAT. In:
Proc. of the 8th Latin American Symposium on Theoretical Informatic (LATIN 2008). Ed. by
Laber, Eduardo Sany, Bornstein, Claudson, Nogueira, Tito Loana and Faria, Luerbio. Vol. 4957.
Lecture Notes in Computer Science. Springer, pp. 60–71. doi: 10.1007/978-3-540-78773-0_6
(cit. on p. 37).

Algorithm Analysis 46/47

https://doi.org/10.1007/s00453-012-9741-4
https://doi.org/10.1016/0166-218X(85)90050-2
https://doi.org/10.1145/1993636.1993670
https://doi.org/10.1007/978-3-540-78773-0_6


References
Schiermeyer, Ingo (1996). Pure Literal Look Ahead: An O(1.497n) 3-Satisfability Algorithm (Exten-
ded Abstract). Workshop on the Satisfability Problem, Siena 1996. url: http://gauss.ececs.
uc.edu/franco_files/SAT96/sat-workshop-abstracts.html (cit. on p. 38).
Skiena, Steven S. [1997] (2012). The Algorithm Design Manual. 2nd ed. Corrected printing.
Springer. doi: 10.1007/978-1-84800-070-4 (cit. on p. 2).
Vrajitoru, Dana and Knight, William (2014). Practical Analysis of Algorithms. Springer. doi: 10.
1007/978-3-319-09888-3 (cit. on p. 21).

Algorithm Analysis 47/47

http://gauss.ececs.uc.edu/franco_files/SAT96/sat-workshop-abstracts.html
http://gauss.ececs.uc.edu/franco_files/SAT96/sat-workshop-abstracts.html
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.1007/978-3-319-09888-3
https://doi.org/10.1007/978-3-319-09888-3

	Algorithm Analysis
	Introduction
	The RAM Model of Computation
	Best, Worst and Average-Case Complexity
	Asymptotic Notations
	The Tyranny of Growth Rate
	Dominance Relations
	References


