CM0884 Graph Theory

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2018-1

Administrative Information

Course web page
http://www1.eafit.edu.co/asr/courses/cm0884-graph-theory/
Exams, bibliography, etc.
See course web page.
Textbook
Diestel, Reinhard (2017). Graph Theory. 5th ed. Springer.

The Basics

Preliminaries

Convention

The set of natural numbers, denoted \mathbb{N}, includes the zero.

Preliminaries

Convention
The set of natural numbers, denoted \mathbb{N}, includes the zero.
Notation
Let A be a set. We denote the set of all k-subsets of A by $[A]^{k}$.

Preliminaries

Convention

The set of natural numbers, denoted \mathbb{N}, includes the zero.

Notation

Let A be a set. We denote the set of all k-subsets of A by $[A]^{k}$.
Definition
'A set $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ of disjoint subsets of a set A is a partition of A if the union $\cup A$ of all the sets $A_{i} \in A$ is A and $A_{i} \neq \emptyset$ for every i.' (Diestel 2017, p. 1)

Graphs

Definition
A graph (grafo) is an order pair $G=(V, E)$ of disjoint sets such that $E \subseteq[V]^{2}$.

Graphs

Definition

A graph (grafo) is an order pair $G=(V, E)$ of disjoint sets such that $E \subseteq[V]^{2}$.

Definition

The vertices and the edges (aristas) of a graph $G=(V, E)$ are the elements of V and E, respectively.

Notation

The vertex set of a graph G is denoted $V(G)$ and its edge set is denoted $E(G)$.

Graphs

Example

First example of textbook.*

$$
\begin{aligned}
& V=\{1, \ldots, 7\} \\
& E=\{\{1,2\},\{1,5\},\{2,5\},\{3,4\},\{5,7\}\}
\end{aligned}
$$

*Figure source: Diestel (2017, Fig. 1.1.1).

Graphs

Example

- $G=(V, E)$ where $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $E=[V]^{2}$.
- $G=(V, E)$ where $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $E=\emptyset$.

Graphs

Definition
The empty graph is the graph (\emptyset, \emptyset) and it is denoted \emptyset.

Graphs

Definition
The empty graph is the graph (\emptyset, \emptyset) and it is denoted \emptyset.
Discussion
Should or should not the empty-graph be a graph?

Graphs

Definition

The empty graph is the graph (\emptyset, \emptyset) and it is denoted \emptyset.

Discussion

Should or should not the empty-graph be a graph?
In the abstract of an article about this question, Harary and Read (1974) wrote:
'The graph with no points and no lines is discussed critically. Arguments for and against its official admittance as a graph are presented. This is accompanied by an extensive survey of the literature. Paradoxical properties of the null-graph are noted. No conclusion is reached.'

Graphs

Some remarks on our definition of graph

- The edges in our graphs are undirected because $\{v, w\}=\{w, v\}$.

Graphs

Some remarks on our definition of graph

- The edges in our graphs are undirected because $\{v, w\}=\{w, v\}$.
- Since $\{v, v\} \notin[V]^{2}$ because $|\{v, v\}|=|\{v\}|=1$, our graphs have no loops.

Graphs

Some remarks on our definition of graph

- The edges in our graphs are undirected because $\{v, w\}=\{w, v\}$.
- Since $\{v, v\} \notin[V]^{2}$ because $|\{v, v\}|=|\{v\}|=1$, our graphs have no loops.
- Since the multiplicity of an element in a set is one, our graphs have no parallel edges.

Graphs

Some remarks on our definition of graph

- The edges in our graphs are undirected because $\{v, w\}=\{w, v\}$.
- Since $\{v, v\} \notin[V]^{2}$ because $|\{v, v\}|=|\{v\}|=1$, our graphs have no loops.
- Since the multiplicity of an element in a set is one, our graphs have no parallel edges.
- A graph with undirected egdes, without loops and without parallel edges is also called a simple graph in the literature. E.g. (Bondy and Murty 2008).

Graphs

Some remarks on our definition of graph

- The edges in our graphs are undirected because $\{v, w\}=\{w, v\}$.
- Since $\{v, v\} \notin[V]^{2}$ because $|\{v, v\}|=|\{v\}|=1$, our graphs have no loops.
- Since the multiplicity of an element in a set is one, our graphs have no parallel edges.
- A graph with undirected egdes, without loops and without parallel edges is also called a simple graph in the literature. E.g. (Bondy and Murty 2008).
- The sets V and E must be disjoint for ruling out 'graphs' like $V=\{a, b,\{a, b\}\}$ and $E=\{\{a, b\}\}$.

Graphs

Definition
The order of graph G, denoted $|G|$, is its number of vertices.

Graphs

Definition
The order of graph G, denoted $|G|$, is its number of vertices.
Definition
A graph G is finite, infinite, countable and so on according to $|G|$.

Graphs

Definition

A graph is trivial iff $|G|=0$ or $|G|=1$.
Remark
Diestel (2017, p. 16):
'Sometimes, e.g. to start an induction, trivial graphs can be useful; at other times they form silly counterexamples and become a nuisance. To avoid cluttering the text with non-triviality conditions, we shall mostly treat the trivial graphs, and particularly the empty graph \emptyset, with generous disregard.'

Graphs

Definition

A vertex v is incident with an edge e if $v \in e$, then e is an edge at v.

Graphs

Definition

A vertex v is incident with an edge e if $v \in e$, then e is an edge at v.

Definition

The two vertices incident with an edge are its ends (puntos finales).

Graphs

Notation
An edge $\{x, y\}$ also will be written as $x y$ (or $y x$).

Graphs

Notation
An edge $\{x, y\}$ also will be written as $x y$ (or $y x$).
Definition
If $x \in X$ and $y \in Y$, then $x y$ is an $\boldsymbol{X} \boldsymbol{-} \boldsymbol{Y}$ edge.

Graphs

Notation

An edge $\{x, y\}$ also will be written as $x y$ (or $y x$).

Definition

If $x \in X$ and $y \in Y$, then $x y$ is an $\boldsymbol{X} \boldsymbol{-} \boldsymbol{Y}$ edge.

Notation

The set of all $X-Y$ edges in a set E is denoted by $E(X, Y)$. In addition.

$$
\begin{aligned}
& E(x, Y):=E(\{x\}, Y), \\
& E(X, y):=E(X,\{y\})
\end{aligned}
$$

Graphs

Notation

An edge $\{x, y\}$ also will be written as $x y$ (or $y x$).

Definition

If $x \in X$ and $y \in Y$, then $x y$ is an $\boldsymbol{X} \boldsymbol{-} \boldsymbol{Y}$ edge.

Notation

The set of all $X-Y$ edges in a set E is denoted by $E(X, Y)$. In addition.

$$
\begin{aligned}
& E(x, Y):=E(\{x\}, Y), \\
& E(X, y):=E(X,\{y\})
\end{aligned}
$$

Notation

The set of all the edges in a set E at a vertex v is denoted $E(v)$.

Graphs

Definition

Two vertices x, y of a graph G are adjacent or neighbours, iff $\{x, y\}$ is an edge of G.

Graphs

Definition

Two vertices x, y of a graph G are adjacent or neighbours, iff $\{x, y\}$ is an edge of G.
Definition
Two edges $e \neq f$ are adjacent iff they have an end in common.

Complete Graphs

Definition
A graph is complete iff all its vertices are pairwise adjacent.

Complete Graphs

Definition

A graph is complete iff all its vertices are pairwise adjacent.

Notation

A complete graph on n vertices is denoted K^{n}.

Complete Graphs

Example (some K^{n} graphs*)

Isomorphisms

Definition
Whiteboard.
Notation
If G and G^{\prime} are isomorphic is denoted by $G \simeq G^{\prime}$.

Isomorphisms

Example

The following graphs are isomorphic.

The functions ψ and its inverse preserve adjacency.

$$
\begin{aligned}
& \psi:\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \rightarrow\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\} \\
& \psi\left(v_{1}\right)=w_{1}, \psi\left(v_{2}\right)=w_{4}, \psi\left(v_{3}\right)=w_{3} \text { and } \psi\left(v_{4}\right)=w_{2}
\end{aligned}
$$

Isomorphisms

Remark

Since graphs are not algebraic structures but relational ones, a bijective homomorphism between graphs need not be an isomorphism (see, e.g. Cohn (1981, p. 190)).

Isomorphisms

Remark

Since graphs are not algebraic structures but relational ones, a bijective homomorphism between graphs need not be an isomorphism (see, e.g. Cohn (1981, p. 190)).

Definition

A homomorphism ψ between two relational structures is (see, e.g. Cohn (1981)):

- a monomorphism iff ψ is an injection,
- an epimorphism iff ψ is a surjection,
- an endomorphism iff ψ is from a relational structure to itself,
- an isomorphism iff ψ has an inverse which is also a homomorphism,
- an automorphism iff ψ is an isomorphism and an endomorphism.

Isomorphisms

Definition
A graph property is a class of graphs that is closed under isomorphism.

Isomorphisms

Definition

A graph property is a class of graphs that is closed under isomorphism.

Example

- To have a number even of vertices.
- To contain three pairwise adjacent vertices.

Isomorphisms

Definition

A graph invariant (or parameter) is a map taking graphs as arguments and assigning equal values to isomorphic graphs.

Isomorphisms

Definition

A graph invariant (or parameter) is a map taking graphs as arguments and assigning equal values to isomorphic graphs.

Example

- The number of vertices (or edges).
- The greatest number of pairwise adjacent vertices.

Isomorphisms

Definition

A graph invariant (or parameter) is a map taking graphs as arguments and assigning equal values to isomorphic graphs.

Example

- The number of vertices (or edges).
- The greatest number of pairwise adjacent vertices.

Notation

The expression $x:=y$ means that x is being defined as y.

Isomorphisms

Definition
If A is a proposition then we define

$$
\mathbf{1}(A):= \begin{cases}1, & \text { if } A \text { is true } \\ 0, & \text { otherwise }\end{cases}
$$

Isomorphisms

Definition

If A is a proposition then we define

$$
\mathbf{1}(A):= \begin{cases}1, & \text { if } A \text { is true } \\ 0, & \text { otherwise }\end{cases}
$$

Definition
The indicator function of a set S, denoted $\mathbf{1}_{S}$, is defined by (Lovász 2012):

$$
\begin{array}{r}
\mathbf{1}_{S}: S \rightarrow\{0,1\} \\
\mathbf{1}_{S}(x):=\mathbf{1}(x \in S)
\end{array}
$$

Isomorphisms

Definition

If A is a proposition then we define

$$
\mathbf{1}(A):= \begin{cases}1, & \text { if } A \text { is true } \\ 0, & \text { otherwise }\end{cases}
$$

Definition

The indicator function of a set S, denoted $\mathbf{1}_{S}$, is defined by (Lovász 2012):

$$
\begin{array}{r}
\mathbf{1}_{S}: S \rightarrow\{0,1\} \\
\mathbf{1}_{S}(x):=\mathbf{1}(x \in S) .
\end{array}
$$

Relation between properties and invariants
If we identify a graph property P with its indicator function $\mathbf{1}_{P}$, graph properties are just 0-1 valued graph invariants (Lovász 2012).

Subgraphs

Definition

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs.
If $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ then G^{\prime} is a subgraph of G, denoted by $G^{\prime} \subseteq G$, and G is a supergraph of G^{\prime}.

If $G^{\prime} \subseteq G$ and $G^{\prime} \neq G$, then G^{\prime} is a proper subgraph of G.

Subgraphs

Definition

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs.
If $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ then G^{\prime} is a subgraph of G, denoted by $G^{\prime} \subseteq G$, and G is a supergraph of G^{\prime}.

If $G^{\prime} \subseteq G$ and $G^{\prime} \neq G$, then G^{\prime} is a proper subgraph of G.
Examples
Whiteboard.

Subgraphs

Definition

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs.
If $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ then G^{\prime} is a subgraph of G, denoted by $G^{\prime} \subseteq G$, and G is a supergraph of G^{\prime}.

If $G^{\prime} \subseteq G$ and $G^{\prime} \neq G$, then G^{\prime} is a proper subgraph of G.
Examples
Whiteboard.

Theorem

The subgraph relation forms a partial order on all graphs.
Proof
Whiteboard.

Subgraphs

Definition

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs. If $G^{\prime} \subseteq G$ and G^{\prime} contains all the edges whose ends are both in V^{\prime}, then G^{\prime} is an induced subgraph of G and V^{\prime} induces or spans G^{\prime} in G.

Remark

Note that an induced subgraph is a subgraph obtained only by deleting vertices.

Subgraphs

Definition

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs. If $G^{\prime} \subseteq G$ and G^{\prime} contains all the edges whose ends are both in V^{\prime}, then G^{\prime} is an induced subgraph of G and V^{\prime} induces or spans G^{\prime} in G.

Remark

Note that an induced subgraph is a subgraph obtained only by deleting vertices.

Examples

Whiteboard.

Subgraphs

Definition

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs. If $G^{\prime} \subseteq G$ and G^{\prime} contains all the edges whose ends are both in V^{\prime}, then G^{\prime} is an induced subgraph of G and V^{\prime} induces or spans G^{\prime} in G.

Remark

Note that an induced subgraph is a subgraph obtained only by deleting vertices.

Examples

Whiteboard.

Notation

Let $G=(V, E)$ be a graph and $U \subseteq V$ a set of vertices. We write $G[U]$ for the graph on U whose edges are the edges of G with both ends in U.

Subgraphs

Definition

If $G^{\prime} \subseteq G$ and G^{\prime} contains all the vertices of G, then G^{\prime} is a spanning subgraph (subgrafo de expansión) of G.

Remark
Note that a spanning subgraph is a subgraph obtained only by deleting edges.
Remark
Note that every graph is a spanning subgraph of a complete graph.

New Graphs Using Operations between Sets

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs.

Definition

We define the following graphs:

$$
\begin{aligned}
G \cup G^{\prime} & :=\left(V \cup V^{\prime}, E \cup E^{\prime}\right), \\
G \cap G^{\prime} & :=\left(V \cap V^{\prime}, E \cap E^{\prime}\right), \\
\bar{G} & :=\left(V,[V]^{2} \backslash E\right] .
\end{aligned}
$$

New Graphs Using Operations between Sets

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs.

Definition

We define the following graphs:

$$
\begin{aligned}
G \cup G^{\prime} & :=\left(V \cup V^{\prime}, E \cup E^{\prime}\right), \\
G \cap G^{\prime} & :=\left(V \cap V^{\prime}, E \cap E^{\prime}\right), \\
\bar{G} & :=\left(V,[V]^{2} \backslash E\right] .
\end{aligned}
$$

Definition
If $G \cap G^{\prime}=\emptyset$, then G and G^{\prime} are disjoint graphs.

New Graphs Using Operations between Sets

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs, $U \subseteq V$ a set of vertices and $F \subseteq[V]^{2}$ a set of edges.

Definition

We define the following graphs:

$$
\begin{aligned}
G-U & :=G[V \backslash U], & & G-v:=G-\{v\}, \\
G-G^{\prime} & :=G-V\left(G^{\prime}\right), & & \\
G-F & :=(V, E \backslash F), & & G-e:=G-\{e\}, \\
G+F & :=(V, E \cup F), & & G+e:=G+\{e\} .
\end{aligned}
$$

New Graphs Using Operations between Sets

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs, $U \subseteq V$ a set of vertices and $F \subseteq[V]^{2}$ a set of edges.

Definition

We define the following graphs:

$$
\begin{array}{rlrl}
G-U & :=G[V \backslash U], & & G-v:=G-\{v\}, \\
G-G^{\prime} & :=G-V\left(G^{\prime}\right), & & \\
G-F & :=(V, E \backslash F), & & G-e:=G-\{e\}, \\
G+F & :=(V, E \cup F), & G+e:=G+\{e\} .
\end{array}
$$

Examples

Whiteboard.

New Graphs Using Other Operations

Definition

Let G and G^{\prime} be two disjoint graphs. By $G * G^{\prime}$ we denoted the graph obtained from $G \cup G^{\prime}$ by joining all the vertices of G to all the vertices of G^{\prime}.

New Graphs Using Other Operations

Definition

Let G and G^{\prime} be two disjoint graphs. By $G * G^{\prime}$ we denoted the graph obtained from $G \cup G^{\prime}$ by joining all the vertices of G to all the vertices of G^{\prime}.

Example

$$
K^{2} * K^{3}=K^{5} .
$$

The Degree of a Vertex

Definition
The degree (or valence) of a vertex v, denoted $d(v)$, is the number of edges at v.

The Degree of a Vertex

Definition

We define the following invariants:

$$
\begin{aligned}
\delta(G) & :=\min \{d(v) \mid v \in V\} \\
\Delta(G) & :=\max \{d(v) \mid v \in V\} \\
d(G) & :=\frac{1}{|V|} \sum_{v \in V} d(v) \\
\epsilon(G) & :=\frac{|E|}{|V|}
\end{aligned}
$$

The Degree of a Vertex

Proposition (1.2.2)
Every graph G with at least one edge has a subgraph H with

$$
\delta(H)>\epsilon(H) \geq \epsilon(G)
$$

Proof
Whiteboard.

Regular Graphs

Definition

For $k \in \mathbb{N}$, a graph is \boldsymbol{k}-regular iff all its vertices have degree k.
Example (some regular graphs*)

*Example from https://en.wikipedia.org/wiki/Regular_graph .

Regular Graphs

Convention
A 3-regular graph is called a cubic graph.
Example
The Petersen graph and the Heawood graph are cubic graphs.

Paths and Cycles

Definition

A path is a non-empty graph $P=(V, E)$ where V and E are of the form

$$
\begin{aligned}
V & =\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}, \\
E & =\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k-1} x_{k}\right\},
\end{aligned}
$$

and the x_{i} are all distinct.

Paths and Cycles

Definition

A path is a non-empty graph $P=(V, E)$ where V and E are of the form

$$
\begin{aligned}
V & =\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}, \\
E & =\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k-1} x_{k}\right\},
\end{aligned}
$$

and the x_{i} are all distinct. The vertices x_{0} and x_{k} are the ends of P.

Paths and Cycles

Definition

The length of a path is its number of edges.

Paths and Cycles

Definition

The length of a path is its number of edges.

Notation

For $k \in \mathbb{N}$, a path of length k is denoted by P^{k}.

Paths and Cycles

Definition

The length of a path is its number of edges.

Notation

For $k \in \mathbb{N}$, a path of length k is denoted by P^{k}.
Example
$P^{0}=K^{1}$.
Examples
Whiteboard.

Paths and Cycles

Definition

Let G be a graph. A path P is a G-path iff P is non-trivial and meets G exactly in its ends.

Paths and Cycles

Notation

Sometimes we denoted a path by the sequence of its vertices, i.e.,

$$
P=x_{0} x_{1} \ldots x_{k}
$$

Paths and Cycles

Notation

Sometimes we denoted a path by the sequence of its vertices, i.e.,

$$
P=x_{0} x_{1} \ldots x_{k}
$$

Notation

Let $P=x_{0} x_{1} \ldots x_{k}$ be a path. For $0 \leq i \leq j \leq k$ we write

$$
x_{i} P x_{j}:=x_{i} \ldots x_{j} .
$$

Paths and Cycles

Definition

Let A and B two sets of vertices. A path $P=x_{0} \ldots x_{k}$ is an $\boldsymbol{A}-\boldsymbol{B}$ path if

$$
V(P) \cap A=\left\{x_{0}\right\} \quad \text { and } \quad V(P) \cap B=\left\{x_{k}\right\} .
$$

Paths and Cycles

Definition

Let A and B two sets of vertices. A path $P=x_{0} \ldots x_{k}$ is an $\boldsymbol{A}-\boldsymbol{B}$ path if

$$
V(P) \cap A=\left\{x_{0}\right\} \quad \text { and } \quad V(P) \cap B=\left\{x_{k}\right\}
$$

Notation

$$
\begin{aligned}
a-B \text { path } & :=\{a\}-B \text { path, } \\
A-b \text { path } & :=A-\{b\} \text { path, } \\
a-b \text { path } & :=\{a\}-\{b\} \text { path. }
\end{aligned}
$$

Paths and Cycles

Definition

If $P=x_{0} \ldots x_{k-1}$ is a path and $k \geq 3$, then the following graph is a cycle:

$$
C:=P+x_{k-1} x_{0} .
$$

Paths and Cycles

Definition

If $P=x_{0} \ldots x_{k-1}$ is a path and $k \geq 3$, then the following graph is a cycle:

$$
C:=P+x_{k-1} x_{0} .
$$

Definition

The length of a cycle is its number of edges (or vertices).

Paths and Cycles

Definition

If $P=x_{0} \ldots x_{k-1}$ is a path and $k \geq 3$, then the following graph is a cycle:

$$
C:=P+x_{k-1} x_{0} .
$$

Definition

The length of a cycle is its number of edges (or vertices). Let $k \geq 3$ be an integer. A cycle of length k is a k-cycle and it is denoted by C^{k}.

Examples

Whiteboard.

Paths and Cycles

Definition

An acyclic graph is a graph that contains no cycles.

Paths and Cycles

Definition

An acyclic graph is a graph that contains no cycles.
Definition
An even/odd cycle is a cycle of even/odd length.

Paths and Cycles

Definition
The girth (cintura) of a graph G, denoted $g(G)$, is the length of a shortest cycle contained in G. If G does not contain a cycle, then $g(G):=\infty$.

Remark

Note that we wrote 'a shortest cycle' instead of 'the shortest cycle'.

Paths and Cycles

Definition

The girth (cintura) of a graph G, denoted $g(G)$, is the length of a shortest cycle contained in G. If G does not contain a cycle, then $g(G):=\infty$.

Remark

Note that we wrote 'a shortest cycle' instead of 'the shortest cycle'.

Example

The girths of the Petersen graph and the Heawood graph are 5 and 6, respectively.

Paths and Cycles

Definition

Let C be a cycle. A chord of C is an edge which connects two vertices of C but it is not part of C.

Paths and Cycles

Definition

Let C be a cycle. A chord of C is an edge which connects two vertices of C but it is not part of C.

Example

A cycle (black) with two chords (red edges).

Paths and Cycles

Definition
Let G be a graph. An induced cycle in G is a cycle in G that has no chords.
Remark
Note that an induce cycle in G is an induced subgraph in G.

Example
See Diestel (2017, Fig. 1.3.3).

Paths and Cycles

Proposition (1.3.1)
Let G be a graph. If $\delta(G) \geq 2$ then G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G)+1$.

Paths and Cycles

Definition

The distance between two vertices x, y, denoted $d(x, y)$, is the length of a shortest x - y path in a graph. If there is no such path, then $d(x, y):=\infty$.

Remark

Note that we wrote 'a shortest $x-y$ path' instead of 'the shortest $x-y$ path'.

Paths and Cycles

Definition

Let G be a graph. The diameter of G, denoted $\operatorname{diam}(G)$, is the greatest distance between any two vertices in G, that is,

$$
\operatorname{diam}(G):=\max _{x, y \in V(G)} d(x, y)
$$

Paths and Cycles

Example

Graphs on 10 vertices with diameters 3 and 7.*

Diameter 3

Diameter 7

[^0]
Paths and Cycles

Proposition (1.3.2)
Every graph G containing a cycle satisfies

$$
g(G) \leq 2 \operatorname{diam}(G)+1
$$

Proof by contradiction
Whiteboard.

Paths and Cycles

Definition

Let G be a graph. The eccentricity of a vertex x, denoted $\operatorname{ecc}(x)$, is the greatest distance between x and any other vertex of G (see, e.g. Harary (1969)), that is,

$$
\operatorname{ecc}(x):=\max \{d(x, y) \mid y \in V(G)\}
$$

Paths and Cycles

Example

A graph where the eccentricity of each vertex is shown.*

*Figure source: Harary (1969, Fig. 4.2).

Paths and Cycles

Definition

Let G be a graph. The radius of G, denoted $\operatorname{rad}(G)$, is the minimum eccentricity of its vertices, that is,

$$
\begin{aligned}
\operatorname{rad}(G) & :=\min _{x \in V(G)} \max _{y \in V(G)} d(x, y) \\
& =\min \{\operatorname{ecc}(x) \mid x \in V(G)\} .
\end{aligned}
$$

Paths and Cycles

Definition

Let G be a graph. The radius of G, denoted $\operatorname{rad}(G)$, is the minimum eccentricity of its vertices, that is,

$$
\begin{aligned}
\operatorname{rad}(G) & :=\min _{x \in V(G)} \max _{y \in V(G)} d(x, y) \\
& =\min \{\operatorname{ecc}(x) \mid x \in V(G)\}
\end{aligned}
$$

Definition

Let G be a graph. A vertex v is central in G iff $\operatorname{ecc}(v)=\operatorname{rad}(G)$.

Paths and Cycles

Example

A graph where the eccentricity of each vertex is shown, with $\operatorname{rad}(G)=4$ and central vertices u and v.*

*Figure source: Harary (1969, Fig. 4.2).

Paths and Cycles

Definition

Let G be a graph. A walk of length k in G is a non-empty alternating sequence $v_{0} e_{0} v_{1} e_{1} \ldots e_{k-1} v_{k}$ of vertices and edges in G such that $e_{i}=\left\{v_{i}, v_{i+1}\right\}$, for all $i<k$.

Connected Graphs

Definition

A non-empty graph G is connected (conexo) iff any two of its vertices are linked by a path in G. If a graph is not connected it is a disconnected graph.

Connected Graphs

Definition

A non-empty graph G is connected (conexo) iff any two of its vertices are linked by a path in G. If a graph is not connected it is a disconnected graph.

Example

Complete graphs are connected graphs. The trivial non-empty graph is a connected graph.

Connected Graphs

Definition

A non-empty graph G is connected (conexo) iff any two of its vertices are linked by a path in G. If a graph is not connected it is a disconnected graph.

Example

Complete graphs are connected graphs. The trivial non-empty graph is a connected graph.
Example
The non-trivial 0 -regulars graphs are disconnected graphs.

Connected Graphs

Definition

A non-empty graph G is connected (conexo) iff any two of its vertices are linked by a path in G. If a graph is not connected it is a disconnected graph.

Example

Complete graphs are connected graphs. The trivial non-empty graph is a connected graph.

Example

The non-trivial 0 -regulars graphs are disconnected graphs.

Example

Let n be a positive integer. An n-regular graph can be a connected or a disconnected graph.

Connected Graphs

Example

The Petersen graph and the Heawood graph are connected graphs.

Connected Graphs

Proposition (1.4.1)
The vertices of a connected graph G can always be enumerated, say as v_{1}, \ldots, v_{n}, so that $G_{i}:=G\left[v_{1}, \ldots, v_{i}\right]$ is connected for every i.

Connected Graphs

Proposition (1.4.1)

The vertices of a connected graph G can always be enumerated, say as v_{1}, \ldots, v_{n}, so that $G_{i}:=G\left[v_{1}, \ldots, v_{i}\right]$ is connected for every i.

Proof by induction on $|G|$.

1. Choose any vertex as v_{1}, so $G_{1}:=G\left[v_{1}\right]$ is connected.
2. Inductive hypothesis: Assume that v_{1}, \ldots, v_{i} have been chosen for some $i<|G|$, and $G_{i}:=G\left[v_{1}, \ldots, v_{i}\right]$ are connected.
3. Now, chose a vertex $v \in G-G_{i}$.
4. Since G is connected it contains a $v-v_{1}$ path P.
5. Choose as v_{i+1} the last vertex of P in $G-G_{i}$.
6. Then v_{i+1} has a neighbour in G_{i}.
7. The connectedness of G_{i+1} follows by the inductive hypothesis and the previous steps.

Components

Remark

Recall that the subgraph relation forms a partial order on all graphs (see this theorem).

Components

Remark

Recall that the subgraph relation forms a partial order on all graphs (see this theorem).
Definition
Let G be a graph. A maximal connected subgraph of G is a component of G.

Components

Remark

Recall that the subgraph relation forms a partial order on all graphs (see this theorem).
Definition
Let G be a graph. A maximal connected subgraph of G is a component of G.
Example
See Diestel (2017, Fig. 1.4.1).

Components

Remark

Recall that the subgraph relation forms a partial order on all graphs (see this theorem).
Definition
Let G be a graph. A maximal connected subgraph of G is a component of G.
Example
See Diestel (2017, Fig. 1.4.1).
Remark
The components of a graph are induced subgraphs.

Components

Remark
Let $G=(V, E)$ be a graph. The vertex sets of the components of G partition the set V.

Components

Remark

Let $G=(V, E)$ be a graph. The vertex sets of the components of G partition the set V.
What about the empty-graph?
If a graph is connected then it is a not-empty graph, so the empty-graph has no components.

k-Connected Graphs

Definition

For $k \in \mathbb{N}$, a graph $G=(V, E)$ is \boldsymbol{k}-connected (or \boldsymbol{k}-vertex-connected) iff
i) $|G|>k$ and
ii) for every $X \subseteq V(G)$, if $|X|<k$ then $G-X$ is a connected graph.

k-Connected Graphs

Definition

For $k \in \mathbb{N}$, a graph $G=(V, E)$ is \boldsymbol{k}-connected (or \boldsymbol{k}-vertex-connected) iff
i) $|G|>k$ and
ii) for every $X \subseteq V(G)$, if $|X|<k$ then $G-X$ is a connected graph.

Example
Every non-empty disconneted graph is 0-connected (by false antecedent).x
Example
Every non-empty graph is 0-connected (by false antecedent).

k-Connected Graphs

Definition

For $k \in \mathbb{N}$, a graph $G=(V, E)$ is \boldsymbol{k}-connected (or \boldsymbol{k}-vertex-connected) iff
i) $|G|>k$ and
ii) for every $X \subseteq V(G)$, if $|X|<k$ then $G-X$ is a connected graph.

Example
Every non-empty disconneted graph is 0-connected (by false antecedent).x
Example
Every non-empty graph is 0-connected (by false antecedent).
Example
The 1-connected graphs are the non-trivial connected graphs.

k-Connected Graphs

Example

A K^{n} graph, with $n \geq 1$, is an $(n-1)$-connected graph.

k-Connected Graphs

Example

A K^{n} graph, with $n \geq 1$, is an $(n-1)$-connected graph.

Exercise

To build a 1-connected but not 2-connected graph.

k-Connected Graphs

Example

A K^{n} graph, with $n \geq 1$, is an $(n-1)$-connected graph.

Exercise

To build a 1-connected but not 2-connected graph.
Example
A 2-connected but not 3-connected graph.

Connectivity

Remark
Note that if a graph is k-connected, with $k \geq 1$, then it also is $(k-1)$-connected.

Connectivity

Remark
Note that if a graph is k-connected, with $k \geq 1$, then it also is $(k-1)$-connected.
Definition
The greatest integer k such that a graph G is k-connected is the connectivity of G, denoted $\kappa(G)$.

Connectivity

Remark

Note that if a graph is k-connected, with $k \geq 1$, then it also is $(k-1)$-connected.

Definition

The greatest integer k such that a graph G is k-connected is the connectivity of G, denoted $\kappa(G)$.

Example
$\kappa(G)=0$ if G is disconnected.

Connectivity

Remark

Note that if a graph is k-connected, with $k \geq 1$, then it also is $(k-1)$-connected.

Definition

The greatest integer k such that a graph G is k-connected is the connectivity of G, denoted $\kappa(G)$.

Example
$\kappa(G)=0$ if G is disconnected.
Question
Why $\kappa\left(K^{1}\right)$ is not 1 , but 0 ?

Connectivity

Remark

Note that if a graph is k-connected, with $k \geq 1$, then it also is $(k-1)$-connected.

Definition

The greatest integer k such that a graph G is k-connected is the connectivity of G, denoted $\kappa(G)$.

Example
$\kappa(G)=0$ if G is disconnected.
Question
Why $\kappa\left(K^{1}\right)$ is not 1 , but 0 ? Because $\left|K^{1}\right| \ngtr 1$.

Connectivity

Remark

Note that if a graph is k-connected, with $k \geq 1$, then it also is $(k-1)$-connected.

Definition

The greatest integer k such that a graph G is k-connected is the connectivity of G, denoted $\kappa(G)$.

Example
$\kappa(G)=0$ if G is disconnected.

Question

Why $\kappa\left(K^{1}\right)$ is not 1 , but 0 ? Because $\left|K^{1}\right| \ngtr 1$.
Example
$\kappa\left(K^{n}\right)=n-1$, for all $n \geq 1$.

l-Edge-Connected Graphs

Definition
For $l \in \mathbb{N}$, a graph $G=(V, E)$ is l-edge-connected iff
i) $|G|>1$, i.e. G is non-trivial, and
ii) for every set $F \subseteq E(G)$, if $|F|<l$ then $G-F$ is a connected graph.

l-Edge-Connected Graphs

Definition
For $l \in \mathbb{N}$, a graph $G=(V, E)$ is l-edge-connected iff
i) $|G|>1$, i.e. G is non-trivial, and
ii) for every set $F \subseteq E(G)$, if $|F|<l$ then $G-F$ is a connected graph.

Example
Every non-trivial graph is 0-edge-connected (by false antecedent).

l-Edge-Connected Graphs

Definition

For $l \in \mathbb{N}$, a graph $G=(V, E)$ is l-edge-connected iff
i) $|G|>1$, i.e. G is non-trivial, and
ii) for every set $F \subseteq E(G)$, if $|F|<l$ then $G-F$ is a connected graph.

Example
Every non-trivial graph is 0-edge-connected (by false antecedent).
Example
The 1-edge-connected graphs are the non-trivial connected graphs.

l-Edge-Connected Graphs

Definition

For $l \in \mathbb{N}$, a graph $G=(V, E)$ is l-edge-connected iff
i) $|G|>1$, i.e. G is non-trivial, and
ii) for every set $F \subseteq E(G)$, if $|F|<l$ then $G-F$ is a connected graph.

Example
Every non-trivial graph is 0-edge-connected (by false antecedent).

Example

The 1-edge-connected graphs are the non-trivial connected graphs.
Example
A K^{n} graph, with $n \geq 2$, is an ($n-1$)-edge-connected graph.

Edge-Connectivity

Remark

Note that if a graph is l-edge-connected, with $l \geq 1$, then it also is $(l-1)$-edge-connected.

Edge-Connectivity

Remark

Note that if a graph is l-edge-connected, with $l \geq 1$, then it also is $(l-1)$-edge-connected.
Definition
The greatest integer l such that a graph G is l-edge-connected is the edge-connectivity of G, denoted $\lambda(G)$.

Edge-Connectivity

Remark

Note that if a graph is l-edge-connected, with $l \geq 1$, then it also is $(l-1)$-edge-connected.

Definition

The greatest integer l such that a graph G is l-edge-connected is the edge-connectivity of G, denoted $\lambda(G)$.

Example
$\lambda(G)=0$ if G is disconnected.

Edge-Connectivity

Remark

Note that if a graph is l-edge-connected, with $l \geq 1$, then it also is $(l-1)$-edge-connected.

Definition

The greatest integer l such that a graph G is l-edge-connected is the edge-connectivity of G, denoted $\lambda(G)$.

Example
$\lambda(G)=0$ if G is disconnected.

Example
$\lambda\left(K^{n}\right)=n-1$, for all $n \geq 2$.

Connectivity and Edge-Connectivity

Question
Can the connectivity and the edge-connectivity be equals? Yes!
*Figure source: Diestel (2017, Fig. 1.4.3).

Connectivity and Edge-Connectivity

Question
Can the connectivity and the edge-connectivity be equals? Yes!
Example
A graph G with $\kappa(G)=\lambda(G)=4$.*

*Figure source: Diestel (2017, Fig. 1.4.3).

Connectivity and Edge-Connectivity

Question
Can the connectivity be smaller than the edge-connectivity? Yes!
*Figure source: Diestel (2017, Fig. 1.4.3).

Connectivity and Edge-Connectivity

Question

Can the connectivity be smaller than the edge-connectivity? Yes!

Example

A graph H with $\kappa(H)=2$ and $\lambda(H)=4 .{ }^{*}$

*Figure source: Diestel (2017, Fig. 1.4.3).

Edge-Connectivity and Minimum Degree

Question

Can the edge-connectivity and the minimum degree be equals? Yes!

Edge-Connectivity and Minimum Degree

Question

Can the edge-connectivity and the minimum degree be equals? Yes!

Remark

Recall that $\delta(G)$ denotes the minimum degree of a graph G.
Example
Let G be a K^{n} graph, with $n \geq 2$, then $\lambda(G)=\delta(G)=n-1$.

Edge-Connectivity and Minimum Degree

Question

Can the edge-connectivity be smaller that the minimum degree? Yes!

Edge-Connectivity and Minimum Degree

Question

Can the edge-connectivity be smaller that the minimum degree? Yes!

Example

A graph G with $\lambda(G)=1$ and $\delta(G)=2$.

Connectivity, Edge-Connectivity and Minimum Degree

Proposition (1.4.2)
If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Forests and Trees

Definition
A forest (bosque) is an acyclic graph. A tree is a connected acyclic graph.

Forests and Trees

Definition
A forest (bosque) is an acyclic graph. A tree is a connected acyclic graph.
Remark
A forest is a graph whose components are trees.

Forests and Trees

Example

A forest formed with all the trees with at most five vertices.*

*Figure source: Biggs, Lloyd and Wilson (1998, Fig. 3.1).

Forests and Trees

Example
 A tree.*

*Figure source: Diestel (2017, Fig. 1.5.1).

Forests and Trees

Definition

In a tree, the vertices of degree 1 are its leaves (except when the root of tree exists and it has degree 1), the other vertices are its inner vertices.

Forests and Trees

Definition

In a tree, the vertices of degree 1 are its leaves (except when the root of tree exists and it has degree 1), the other vertices are its inner vertices.

Remark
Every non-trivial tree has a leaf, so if we remove a leaf from a tree, we still have a tree.

Forests and Trees

Theorem (1.5.1)

The following four assertions are equivalent for a graph T :
i) T is a tree;

Forests and Trees

Theorem (1.5.1)

The following four assertions are equivalent for a graph T :
i) T is a tree;
ii) any two vertices of T are linked by a unique path in T;

Forests and Trees

Theorem (1.5.1)
The following four assertions are equivalent for a graph T :
i) T is a tree;
ii) any two vertices of T are linked by a unique path in T;
iii) T is minimally (respect to the subgraph relation) connected, i.e. T is connected but $T-e$ is disconnected for every edge $e \in T$;

Forests and Trees

Theorem (1.5.1)
The following four assertions are equivalent for a graph T :
i) T is a tree;
ii) any two vertices of T are linked by a unique path in T;
iii) T is minimally (respect to the subgraph relation) connected, i.e. T is connected but $T-e$ is disconnected for every edge $e \in T$;
iv) T is maximally (respect to the subgraph relation) acyclic, i.e. T contains no cycle but $T+x y$ does, for any two non-adjacent vertices $x, y \in T$.

Forests and Trees

Corollary (1.5.2)
The vertices of a tree can always be enumerated, say as v_{1}, \ldots, v_{n}, so that every v_{i} with $i \geq 2$ has a unique neighbour in $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

Proof
Use Proposition 1.4.1.

Spanning Trees

Definition
A spanning tree (árbol de expansión, árbol generador o árbol recubridor) of a graph G is a spanning subgraph of G which is a tree.

Spanning Trees

Definition
A spanning tree (árbol de expansión, árbol generador o árbol recubridor) of a graph G is a spanning subgraph of G which is a tree.

Example
See https://www.cs.usfca.edu/~galles/visualization/DFS.html .

Spanning Trees

Example

Spanning trees for the graphs with red vertices.*

*Figure from http://mathworld.wolfram. com/SpanningTree.html.

Spanning Trees

Corollary

Every connected graph contains a spanning tree.

Spanning Trees

Corollary
Every connected graph contains a spanning tree.
Proof

- Build a minimal connected subgraph and apply Theorem 1.5.1.iii or
- Build a maximal acyclic subgraph and apply Theorem 1.5.1.iv.

Rooted Trees

Definition

The root of a tree is a vertex considered as special.
Definition
A rooted tree is a tree with a fixed root r.

Rooted Trees

Example

A tree with root r.

Rooted Trees

Example

Four representations of a tree with root a.*

Downward

Upward

Continued on next slide

[^1]
Rooted Trees

Example (continuation)

Left to right

Right to left

Rooted Trees

Definition
Let T be a tree with root r. We define the tree-order on $V(T)$ associated with T and r by:

$$
x \leq y:=x \in r T y
$$

Rooted Trees

Definition

Let T be a tree with root r. We define the tree-order on $V(T)$ associated with T and r by:

$$
x \leq y:=x \in r T y .
$$

Theorem

The tree-order associated with a rooted tree T is a partial order on $V(T)$.

Proof

Whiteboard.

Rooted Trees

Remarks

In the tree-order of a rooted tree:

- the root is the least element,
- the leaves are its maximal elements and
- the ends of any edge are comparable

Rooted Trees

Remarks

In the tree-order of a rooted tree:

- the root is the least element,
- the leaves are its maximal elements and
- the ends of any edge are comparable

Definition
The down-closure of a vertex v is defined by

$$
\lceil v\rceil:=\{x \mid x \leq v\} .
$$

Rooted Trees

Remarks

In the tree-order of a rooted tree:

- the root is the least element,
- the leaves are its maximal elements and
- the ends of any edge are comparable

Definition

The down-closure of a vertex v is defined by

$$
\lceil v\rceil:=\{x \mid x \leq v\} .
$$

Remark

Let v be a vertex. The down-closure of v is a chain.

Normal Spanning Trees

Definition

A rooted spanning tree T of a graph G is a normal spanning tree (also called Trémaux tree) iff the ends of every edge of G (i.e. every two adjacent vertices) are comparable in the tree-order on $V(G)$ induced by T (Diestel and Leader 2001).

Normal Spanning Trees

Example

A graph G and a spanning tree T of G. The tree T is a normal spanning tree only when its root is a or d.

Normal Spanning Trees

Example

A normal spanning tree T with root r of the graph $G .{ }^{*}$

*Figure source: Diestel (2017, Fig. 1.5.2).

Normal Spanning Trees

Proposition (1.5.6)

Every connected graph contains a normal spanning tree, with any specified vertex as its root.

Normal Spanning Trees

Exercise $\left(1.26^{+}\right)$

Depth-first search algorithm: Let G be a connected graph, and let $r \in G$ be a vertex. Starting from r, move along the edges of G, going whenever possible to a vertex not visited so far. If there is no such vertex, go back along the edge by which the current vertex was first reached (unless the current vertex is r; then stop).

Show that the edges traversed form a normal spanning tree in G with root r.

Normal Spanning Trees

Exercise $\left(1.26^{+}\right)$
Depth-first search algorithm: Let G be a connected graph, and let $r \in G$ be a vertex. Starting from r, move along the edges of G, going whenever possible to a vertex not visited so far. If there is no such vertex, go back along the edge by which the current vertex was first reached (unless the current vertex is r; then stop).

Show that the edges traversed form a normal spanning tree in G with root r.

Remark

See an animation of the depth-first search algorithm in https://www.cs.usfca.edu/ ~galles/visualization/DFS.html.

Normal Spanning Trees

Remark

The property of being a normal spanning tree can be expressed in monadic second-order logic (Courcelle and Engelfriet 2012).

Normal Spanning Trees

Remark

The property of being a normal spanning tree can be expressed in monadic second-order logic (Courcelle and Engelfriet 2012).

Remark

A formal verification of deep-first search algorithms was done by Lammich and Neumann (2015).

Bipartite Graphs

Definition

Let $r \geq 2$ be an integer. A graph is r-partite iff its vertex set can be partitioned into r classes such that every edge has its ends in different classes.

Remark

Note that in an r-partite graph the vertices in the same partition class are not adjacent.

Convention
The 2-partite and 3-partite graphs are called bipartite and tripartite, respectively.

Bipartite Graphs

Example

A bipartite graph.

Bipartite Graphs

Example
A tripartite graph.

Bipartite Graphs

Example

Is the following graph, which has three components, a bipartite graph?

Bipartite Graphs

Example

Is the following graph, which has three components, a bipartite graph?

Yes!

Bipartite Graphs

Example
Another bipartite graph.

Bipartite Graphs

Proposition (1.6.1)
A graph is bipartite iff all its cycles are of even length.

Bipartite Graphs

Proposition (1.6.1)

A graph is bipartite iff all its cycles are of even length.

Proof (\Rightarrow).

See (Bollobás 2002, Theorem I.4).

1. Let G be a bipartite graph with two vertex classes V_{1} and V_{2} and let $C:=x_{1} x_{2} \ldots x_{k} x_{1}$ be a cycle in G.
2. We suppose that $x_{1} \in V_{1}$ (if not, just rename the vertex classes).
3. Therefore, $x_{2} \in V_{2}, x_{3} \in V_{1}$, and so on. Hence, $x_{i} \in V_{1}$ iff i is odd.
4. Since $x_{k} \in V_{2}$, we can conclude that C is an even cycle.

Bipartite Graphs

Proof (\Leftarrow).

1. Let every cycle of G an even cycle and let suppose G is connected.
2. Pick a vertex $x \in V(G)$.
3. Define the vertex sets

$$
\begin{aligned}
& V_{1}:=\{y \in V(G) \mid d(x, y) \text { is odd }\} \\
& V_{2}:=V(G) \backslash V_{1}
\end{aligned}
$$

4. Note that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V(G)$ because G is connected. Therefore, the set $\left\{V_{1}, V_{2}\right\}$ partitions $V(G)$.
5. Note that if G had any edge between two vertices of the same set V, the graph G would have an odd cycle.
6. Hence, G is bipartite.
7. Now, if G is disconnected build the partition repeating of previous steps on each component of G.

Bipartite Graphs

Proposition (1.6.1, previous version)
A graph is bipartite iff all its cycles are of even length.

Bipartite Graphs

Proposition (1.6.1, previous version)
A graph is bipartite iff all its cycles are of even length.
Proposition (1.6.1, final version)
A graph is bipartite iff it contains no odd cycle.

Bipartite Graphs

Proposition (1.6.1, previous version)
A graph is bipartite iff all its cycles are of even length.
Proposition (1.6.1, final version)
A graph is bipartite iff it contains no odd cycle.
Discussion
Which is the smallest bipartite graph?

Bipartite Graphs

Definition

An r-partite graph is complete iff every two vertices from different partition classes are adjacent.

Definition

A complete multipartite graph is a graph that is complete k-partite for some k.

Bipartite Graphs

Definition

An r-partite graph is complete iff every two vertices from different partition classes are adjacent.

Definition

A complete multipartite graph is a graph that is complete k-partite for some k.
Convention
We denoted by $K_{n_{1}, \ldots, n_{r}}$ the complete r-partite graph where n_{1}, \ldots, n_{r} are the sizes of each vertex set in the partition.

Bipartite Graphs

Example

Two drawings of the tripartite graph $K_{2,2,2}$.

Bipartite Graphs

Example

The tripartite graph $K_{2,3,2}$.

Bipartite Graphs

Notation
The complete r-partite graph $\overline{K^{n_{1}}} * \cdots * \overline{K^{n_{r}}}$ is denoted by $K_{n_{1}, \ldots, n_{r}}$.

Representating Graphs

Let G be a graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$.

Representating Graphs

Let G be a graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$.

Definition

The incidence matrix $B=\left(b_{i j}\right)_{n \times m}$ of G is defined by

$$
b_{i j}:= \begin{cases}1, & \text { if } v_{i} \in e_{j} \\ 0, & \text { otherwise }\end{cases}
$$

Representating Graphs

Let G be a graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$.

Definition

The incidence matrix $B=\left(b_{i j}\right)_{n \times m}$ of G is defined by

$$
b_{i j}:= \begin{cases}1, & \text { if } v_{i} \in e_{j} \\ 0, & \text { otherwise }\end{cases}
$$

Definition

The adjacency matrix $A=\left(a_{i j}\right)_{n \times n}$ of G is defined by

$$
a_{i j}:= \begin{cases}1, & \text { if } v_{i} v_{j} \in E \\ 0, & \text { otherwise }\end{cases}
$$

Other Notions of Graphs

Notation
Let A be a set. The power set of A is denoted by $\mathcal{P}(A)$.

Other Notions of Graphs

Notation
Let A be a set. The power set of A is denoted by $\mathcal{P}(A)$.

Definition

A hypergraph is an order pair (V, E) of disjoint sets of vertices and edges such that the elements of E are non-empty subsets of V, i.e. $E \subseteq \mathcal{P}(V) \backslash\{\emptyset\}$.

Other Notions of Graphs

Notation

Let A be a set. The power set of A is denoted by $\mathcal{P}(A)$.

Definition

A hypergraph is an order pair (V, E) of disjoint sets of vertices and edges such that the elements of E are non-empty subsets of V, i.e. $E \subseteq \mathcal{P}(V) \backslash\{\emptyset\}$.

Remark

Note that graphs are hypergraphs where the elements of their edge sets have cardinality two.

Other Notions of Graphs

Example

Hypergraph example.*

$$
\begin{aligned}
V=\{1, \ldots, 7\}, E & =\left\{e_{1}, \ldots, e_{6}\right\}, \text { and } \\
e_{1} & =\{4,5,6\}, \\
e_{2} & =\{1,2\}, \\
e_{3} & =\{1,5,6\}, \\
e_{4} & =\{2,3,4\}, \\
e_{5} & =\{4,7\}, \\
e_{6} & =\{3\}
\end{aligned}
$$

*Figure source: H. Zhang et al. (2018, Fig. 1.1).

Other Notions of Graphs

Definition

A directed graph (or digraph) is a order pair (V, E) of disjoint sets of vertices and edges and two functions init : $E \rightarrow V$ and ter : $E \rightarrow V$.

Other Notions of Graphs

Definition

A directed graph (or digraph) is a order pair (V, E) of disjoint sets of vertices and edges and two functions init : $E \rightarrow V$ and ter $: E \rightarrow V$.
The functions init and ter assign to every edge e an initial vertex init (e) and a terminal vertex $\operatorname{ter}(e)$.

Other Notions of Graphs

Definition

A directed graph (or digraph) is a order pair (V, E) of disjoint sets of vertices and edges and two functions init : $E \rightarrow V$ and ter $: E \rightarrow V$.
The functions init and ter assign to every edge e an initial vertex init (e) and a terminal vertex $\operatorname{ter}(e)$.

An edge e is directed from init (e) to ter (e).

Other Notions of Graphs

Definition

A directed graph (or digraph) is a order pair (V, E) of disjoint sets of vertices and edges and two functions init : $E \rightarrow V$ and ter $: E \rightarrow V$.
The functions init and ter assign to every edge e an initial vertex init (e) and a terminal vertex $\operatorname{ter}(e)$.

An edge e is directed from init (e) to ter (e).
Two or more edges are multiple edges iff they are edges between the same pair of vertices. If also they have the same direction they are parallel edges.

Other Notions of Graphs

Definition

A directed graph (or digraph) is a order pair (V, E) of disjoint sets of vertices and edges and two functions init : $E \rightarrow V$ and ter $: E \rightarrow V$.

The functions init and ter assign to every edge e an initial vertex init (e) and a terminal vertex $\operatorname{ter}(e)$.
An edge e is directed from init (e) to ter (e).
Two or more edges are multiple edges iff they are edges between the same pair of vertices. If also they have the same direction they are parallel edges.

An edge e is a loop iff $\operatorname{init}(e)=\operatorname{ter}(e)$.

Other Notions of Graphs

Definition

A multigraph is a order pair (V, E) of disjoint sets of vertices and edges and one function $E \rightarrow V \cup[V]^{2}$.

Other Notions of Graphs

Definition

A multigraph is a order pair (V, E) of disjoint sets of vertices and edges and one function $E \rightarrow V \cup[V]^{2}$.

Remark

Note that multigraphs can have loops and multiple edges.

Other Notions of Graphs

Definition

A multigraph is a order pair (V, E) of disjoint sets of vertices and edges and one function $E \rightarrow V \cup[V]^{2}$.

Remark

Note that multigraphs can have loops and multiple edges.

Remark

Note that graphs are multigraphs without loops or multiple edges.

Colouring

Colouring Graphs

Definition

Let $G=(V, E)$ be a graph and S be a set whose elements are the available colours. A vertex colouring of G is a function

$$
c: V \rightarrow S
$$

such that $c(v) \neq c(w)$ whenever v and w are adjacent.

Colouring Graphs

Definition
A \boldsymbol{k}-colouring of a graph $G=(V, E)$ is a vertex colouring

$$
c: V \rightarrow\{1, \ldots, k\}
$$

of G.

Colouring Graphs

Example

A 3-colouring and a 2 -colouring for the same graph.

Colouring Graphs

Definition

Let G be a graph and k be the smallest integer such that G has a k-colouring. The number k is the (vertex-)chromatic number of G; denoted $\chi(G)$.

Colouring Graphs

Definition

Let G be a graph and k be the smallest integer such that G has a k-colouring. The number k is the (vertex-)chromatic number of G; denoted $\chi(G)$.

Definition

A graph G is \boldsymbol{k}-colourable iff $\chi(G) \leq k$.

Colouring Planar Graphs

Example

How many colours do we need for colouring South America's map?

Colouring Planar Graphs

Example (continuation)

Graph associated with South America's map where the vertices are the countries and one edge between two vertices means that the countries share a border.

Continued on next slide

Colouring Planar Graphs

Example (continuation)
Let G be the associated graph with South America's map. Then $\chi(G)=4$.

Colouring Planar Graphs

Theorem (Four colour theorem, 5.1.1)
Every planar graph is 4-colourable.

Flows

Flows in Networks

Theorem (Max-flow min-cut theorem, 6.2.2)
In a network, the maximum total value of a flow equals the minimum capacity of a cut (Ford and Fulkerson 1956).

Infinite Graphs

Infinite Graphs

Example

The square, triangular and hexagonal lattices.*

*Figure source: Bondy and Murty (2008, Fig. 1.27).

Ramsey Theory for Graphs

Ramsey's Original Theorems

Theorem (9.1.1)
For every $r \in \mathbb{N}$ there exists an $n \in \mathbb{N}$ such that every graph of order at least n contains either K^{r} or $\overline{K^{r}}$ as an induced subgraph. By Ramsey (1930).

Historical Remarks

Historical Remarks

On the term 'graph'

Sylvester (1878) introduced the term 'graph' on a note in Nature in the context of mathematics and chemistry (Biggs, Lloyd and Wilson 1998).

In relation to this term, the above authors wrote (p. 65):
'So the credit (or blame) for the use of this term must be ascribed to Sylvester.'

James Joseph Sylvester (1814-1897)*

[^2]
Historical Remarks

Previous definitions of graphs
König (1916, p. 453):
'Es sei eine endliche Anzahl yon Punkten gegeben; gewisse Paare, die man aus diesen Punkten auswiihlen kann, sollen durch eine oder mehrere (endlich viele) Kanten verbunden werden. Eine auf diese Weise entstehende Figur wird im allgemeinen als ein Graph bezeichne.'

Translation (Biggs, Lloyd and Wilson 1998, p. 203):
'Let a finite number of points be given: then one can choose certain pairs of the points so that one or more (but finitely many) edges join them. A figure constructed in this way we shall generally call a graph.'

Historical Remarks

Previous definitions of graphs
Whitney (1931, p. 378):
'Let a finite number of curves, or edges, whose end-points we call vertices, intersect at no other points than these vertices. Let the system be connected, that is, any two vertices are joined by a succession of edges, each two successive edges having a vertex in common. This forms a graph.'

Historical Remarks

The first book on graph theory was written in German by König in 1936 and only translated to English in 1990

Logic of Graphs

Logic of Graphs

First-order logics
In the first-order theory of graphs, the universe of discourse are the vertices and the language has a proper binary predicate edg representing the relation of adjacency between vertices.

Example

Our definition of graph satisfies the following axioms (Goldberg 1993):

$$
\begin{array}{r}
\forall v(\neg \operatorname{edg}(v, v)) \\
\forall v \forall w(\operatorname{edg}(v, w) \Rightarrow \operatorname{edg}(w, v))
\end{array}
$$

(no loops)
(edges are undirected)

Logic of Graphs

Monadic second-order logic
In monadic second-order logic in addition to the quantification over individual variables, we can also quantifier over sets of variables, i.e. we can quantifier over properties.

Notation

We use uppercase variables for denoting sets of vertices, and lowercase variables for denoting individual vertices.

Logic of Graphs

Monadic second-order logic
In monadic second-order logic in addition to the quantification over individual variables, we can also quantifier over sets of variables, i.e. we can quantifier over properties.

Notation

We use uppercase variables for denoting sets of vertices, and lowercase variables for denoting individual vertices.

Example

A graph satisfies the following sentence if only if it is disconnected (Courcelle and Engelfriet 2012):

$$
\exists X[\exists x . x \in X \wedge \exists y . y \notin X \wedge \forall x \forall y(\operatorname{edg}(x, y) \Rightarrow(x \in X \Leftrightarrow y \in X)]
$$

Undecidable Problems

The r-Neighbourhood Problem

Definition
A rooted graph is a graph with a vertex considered as special (see, e.g. Gross, Yellen and P. Zhang (2013)).

The r-Neighbourhood Problem

Definition

A rooted graph is a graph with a vertex considered as special (see, e.g. Gross, Yellen and P. Zhang (2013)).

Definition

Let G be a graph, v a vertex and k a positive integer. The r-neighbourhood of v, denoted $N_{r}(v)$, is the subgraph induced by the set of vertices of distance at most r from v. The graph $N_{r}(v)$ is a rooted graph with root v.

The r-Neighbourhood Problem

Example

A graph G and two r-neighbourhoods.

$$
N_{2}(x)
$$

The r-Neighbourhood Problem

Definition

Let G be a graph. The \boldsymbol{r}-neighbourhood set of G, denoted $\mathcal{N}_{r}(G)$, is the set of isomorphism classes of r-neighbourhoods of vertices in G.

The r-Neighbourhood Problem

Example

For the graph G in this example, the set $\mathcal{N}_{2}(G)$ consists of the rooted graphs $G_{1}, G_{2}, G_{3}, G_{4}$ and G_{5}.

G_{2}

Continued on next slide

The r-Neighbourhood Problem

Example (continuation)

G_{4}
G_{5}

The r-Neighbourhood Problem

The r-neighbourhood problem
Given a positive integer k and a finite set Φ of rooted graphs, is there a (connected) graph G whose r-neighbourhood set is Φ ?
*Also in a Russian publication translated as V. K. Bulitko (1973), Graphs with Prescribed Environments of the Vertices.

The r-Neighbourhood Problem

The r-neighbourhood problem
Given a positive integer k and a finite set Φ of rooted graphs, is there a (connected) graph G whose r-neighbourhood set is Φ ?

Theorem

The r-neighbourhood problem is undecidable (Winkler 1983, Theorem 5).*
*Also in a Russian publication translated as V. K. Bulitko (1973), Graphs with Prescribed Environments of the Vertices.

Undecidable Problems

Some references to other undecidable problems

- Csóka (2012). 'An Undecidability Result on Limits of Sparse Graphs'.
- Jacobs (1994). 'Undecidability of Winkler's r-Neighborhood Problem for Covering Digraphs'.
- Burr (1984). 'Some Undecidable Problems Involving the Edge-Coloring and Vertex-Coloring of Graphs'.
- Foldes and Steinberg (1980). 'A Topological Space for which Graph Embeddability is Undecidable'.

Some Named Graphs

Some Named Graphs

Remark

The graphs on this section were drawn using the tkz-berge. sty package by Matthes (2011).

Heawood Graph

Vertices 14
Edges 21
3-regular
Girth 6
Connected

Petersen Graph

Vertices 10
Edges 15
3 -regular
Girth 5
Connected

Appendix: Order Theory

Partially Ordered Sets

Definition

A binary relation \preceq on a set A is a partial ordering iff it satisfies the following properties:

$$
\begin{aligned}
\forall x(x \preceq x) & \text { (reflexivity) } \\
\forall x \forall y(x \preceq y \preceq x \Rightarrow x=y) & \text { (anti-symmetry) } \\
\forall x \forall y \forall z(x \preceq y \preceq z \Rightarrow x \preceq z) & \text { (transitivity) }
\end{aligned}
$$

Partially Ordered Sets

Definition

A binary relation \preceq on a set A is a partial ordering iff it satisfies the following properties:

$$
\begin{aligned}
\forall x(x \preceq x) & \text { (reflexivity) } \\
\forall x \forall y(x \preceq y \preceq x \Rightarrow x=y) & \text { (anti-symmetry) } \\
\forall x \forall y \forall z(x \preceq y \preceq z \Rightarrow x \preceq z) & \text { (transitivity) }
\end{aligned}
$$

Definition

Let \preceq be a partial ordering on a set A. The relational structure (A, \preceq) is a partially ordered set (or poset).

Notable Elements

Let (A, \preceq) be a poset.
Definition
An element $a \in A$ is the greatest element (máximo) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.

Notable Elements

Let (A, \preceq) be a poset.
Definition
An element $a \in A$ is the greatest element (máximo) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.
Definition
An element $a \in A$ is the least element (mínimo) iff $a \preceq b$ for all $b \in A$.

Notable Elements

Let (A, \preceq) be a poset.
Definition
An element $a \in A$ is the greatest element (máximo) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.
Definition
An element $a \in A$ is the least element (mínimo) iff $a \preceq b$ for all $b \in A$.

Definition

An element $a \in A$ is a maximal of (A, \preceq) iff there is no $b \in A$ such that $a \prec b$.

Notable Elements

Let (A, \preceq) be a poset.

Definition

An element $a \in A$ is the greatest element (máximo) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.

Definition

An element $a \in A$ is the least element (mínimo) iff $a \preceq b$ for all $b \in A$.

Definition

An element $a \in A$ is a maximal of (A, \preceq) iff there is no $b \in A$ such that $a \prec b$.

Definition

An element $a \in A$ is a minimal (A, \preceq) iff there is no $b \in A$ such that $b \prec a$.

Notable Elements

Example

(a)

(b)

(c)

(d)

Fig. Least element Greatest element Maximals Minimals

(a)	a		c, d, e	a
(b)		d, e	a, b	
(c)		d	d	a, b
(d)	a	d	d	a

Totally Ordered Sets

Definition

A binary relation \preceq on a set A is a total ordering iff it satisfies the following properties:

$$
\begin{array}{r}
\forall x \forall y(x \preceq y \preceq x \Rightarrow x=y) \\
\forall x \forall y \forall z(x \preceq y \preceq z \Rightarrow x \preceq z) \\
\forall x \forall y(x \preceq y \vee y \preceq x)
\end{array}
$$

(anti-symmetry)
(transitivity)
(totality)

Remark

Note that totality implies reflexivity.

Totally Ordered Sets

Definition

A binary relation \preceq on a set A is a total ordering iff it satisfies the following properties:

$$
\begin{array}{rlrl}
\forall x \forall y(x \preceq y \preceq x \Rightarrow x=y) & \text { (anti-symmetry) } \\
\forall x \forall y \forall z(x \preceq y \preceq z \Rightarrow x \preceq z) & & \text { (transitivity) } \\
\forall x \forall y(x \preceq y \vee y \preceq x) & & \text { (totality) }
\end{array}
$$

Remark

Note that totality implies reflexivity.

Definition

Let \preceq be a total ordering on a set A. The relational structure (A, \preceq) is a totally ordered set (also called linearly ordered set or chain).

Totally Order Sets

Remark

The term chain also can refer to a totally ordered subset of some partially ordered set (Vialar 2016).

Appendix: Topology

Topology

Definition

Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be two topological spaces. A function $f: X \rightarrow Y$ is a homeomorphism iff:

- the function is a bijection and
- both the function and the inverse function are continues.

That is, $f(U)$ is open if and only if U is open.*

*Figure source: Munkres (2000, Fig. 18.1).

References

Biggs, Norman L., Lloyd, E. Keith and Wilson, Robin J. [1976] (1998). Graph Theory. 1736-1936. Reimpression with corrections. Clarendon Press (cit. on pp. 138, 218, 219).
Bollobás, Béla [1998] (2002). Modern Graph Theory. 3rd printing. Graduate Texts in Mathematics. Springer-Verlag. DOI: 10.1007/978-1-4612-0619-4 (cit. on pp. 175, 176).
Bondy, J. A. and Murty, U. S. R. (2008). Graph Theory. Springer-Verlag (cit. on pp. 14-18, 214). Burr, Stefan A. (1984). 'Some Undecidable Problems Involving the Edge-Coloring and VertexColoring of Graphs'. In: Discrete Mathematics 50, pp. 171-177. DOI: 10.1016/0012-365X (84) 90046-3 (cit. on p. 235).
Cohn, P. M. [1965] (1981). Universal Algebra. Revised edition. Vol. 6. Mathematics and Its Applications. D. Reidel Publishing Company (cit. on pp. 35, 36).
Courcelle, Bruno and Engelfriet, Joost (2012). Graph Structure and Monadic Second-Order Logic. A Language-Theoretic Approach. CUP (cit. on pp. 167, 168, 224, 225).
Csóka, Endre (2012). 'An Undecidability Result on Limits of Sparse Graphs'. In: The Electronic Journal of Combinatorics 19.2. P21 (cit. on p. 235).
Diestel, Reinhard [1997] (2017). Graph Theory. 5th ed. Springer. Doi: 10.1007/978-3-662-53622-3 (cit. on pp. 4-6, 9, 21, 82, 101-104, 127-130, 139, 163).

References

Diestel, Reinhard and Leader, Imre (2001). 'Normal Spanning Trees, Aronszajn Trees and Excluded Minors'. In: Journal of the London Mathematical Society 63.1, pp. 16-32. Doi: 10.1112/ S0024610700001708 (cit. on p. 161).
Eells, James and Toledo, Domingo, eds. (1992). Hassler Whitney. Collected Papers. Vol. 1. Birkhäuser. DOI: 10.1007/978-1-4612-2972-8 (cit. on p. 256).
Foldes, Stephane and Steinberg, Richard (1980). 'A Topological Space for which Graph Embeddability is Undecidable'. In: Journal of Combinatorial Theory, Series B 29.3, pp. 342-344. Dor: 10.1016/0095-8956(80) 90092-1 (cit. on p. 235).

Ford, L. R. and Fulkerson, D. R. (1956). 'Maximal Flow through a Network'. In: Canadian Journal of Mathematics 8, pp. 399-404. DOI: 10.4153/CJM-1956-045-5 (cit. on p. 212).
Goldberg, Leslie Ann (1993). 'Polynomial Space Polynomial Delay Algorithms for Listing Families of Graphs'. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing (STOC '93), pp. 218-225. DOI: 10.1145/167088.167160 (cit. on p. 223).
Q Gross, Jonathan L., Yellen, Jay and Zhang, Ping, eds. [2004] (2013). Handbook of Graph Theory. 2nd ed. Discrete Mathematics and Its Applications. CRC Press (cit. on pp. 227, 228). Harary, Frank (1969). Graph Theory. Addison-Wesley (cit. on pp. 88, 89, 92).

References

Harary，Frank and Read，Ronald C．（1974）．＇Is The Null－graph a Pointless Concept？＇In：Graphs and Combinatorics．Ed．by Bari，Ruth A．and Harary，Frank．Vol．406．Lecture Notes in Mathematics． Springer，pp．37－44．DOI：10．1007／BFb0066433（cit．on pp．11－13）．
四 Jacobs，D．P．（1994）．＇Undecidability of Winkler＇s r－Neighborhood Problem for Covering Digraphs＇． In：Journal of Combinatorial Theory，Series B 60．2，pp．254－267．Doi：10．1006／jctb．1994．1017 （cit．on p．235）．
Knuth，Donald E．［1968］（1997）．The Art of Computer Programming．3rd ed．Vol．1．Fundamental Algorithms．Addison－Wesley Professional（cit．on p．154）．
嗇 König，Dénes（1916）．‘Über Graphen und ihre Anwendung auf Determinantentheorie und Mengen－ lehre（On Graphs and their Applications in Determinant Theory and Set Theory）＇．In：Mathemat－ ische Annalen 77．4，pp．453－465．DOI：10．1007／BF01456961（cit．on p．219）．
围 Lammich，Peter and Neumann，René（2015）．＇A Framework for Verifying Depth－First Search Al－ gorithms＇．In：Proceedings of the 2015 Conference on Certified Programs and Proofs（CPP＇15）， pp．137－146．DOI：10．1145／2676724． 2693165 （cit．on pp．167，168）．
Lovász，László（2012）．Large Networks and Graph Limits．Vol．60．Colloquium Publications．Amer－ ican Mathematical Society．DOI：10．1090／coll／060（cit．on pp．42－44）．

References

Matthes，Alain（2011）．NamedGraphs v 1．00c．Documentation accompanying the tkz－berge．sty v 1．00c package（cit．on p．237）．
Munkres，James R．［1974］（2000）．Topology．2nd ed．Prentice Hall（cit．on p．252）．
囯 Ramsey，F．P．（1930）．＇On a Problem of Formal Logic＇．In：Proceedings of the London Mathematical Society s2－30．1，pp．264－286．DOI：10．1112／plms／s2－30．1．264（cit．on p．216）．
國 Sylvester，J．J．（1878）．＇Chemistry and Algebra＇．In：Nature 17．432，p．284．DOI： $10.1038 /$ 017284a0（cit．on p．218）．
Vialar，Thierry（2016）．Handbook of Mathematics．Hdbom（cit．on p．250）．
Whitney，Hassler（1931）．＇A Theorem on Graphs＇．In：Annals of Mathematics 32．2．Reprinted in Eells and Toledo（1992），pp．378－390．DOI： $10.2307 / 1968197$（cit．on p．220）．
國 Winkler，Peter M．（1983）．＇Existence of Graphs with a Given Set of r－Neighborhoods＇．In：Journal of Combinatorial Theory，Series B 34．2，pp．165－176．DOI：10．1016／0095－8956（83）90016－3 （cit．on pp．233，234）．
Zhang，Hongliang，Song，Lingyang，Han，Zhu and Zhang，Yingjun（2018）．Hypergraph Theory in Wireless Communication Networks．Springer．DOI：10．1007／978－3－319－60469－5（cit．on p．192）．

Invariants Index*

$d(G)$, average degree, 59
$\operatorname{diam}(G)$, diameter, 85
$g(G)$, girth, 78, 79
$\operatorname{rad}(G)$, radius, 90,91
$\chi(G)$, chromatic number, 205, 206
$\Delta(G)$, maximum degree, 59
$\delta(G)$, minimum degree, 59
$\epsilon(G)$, number of edges by vertex, 59
$\kappa(G)$, connectivity, 113-118
$\lambda(G)$, edge-connectivity, 123-126
$|G|$, order, 19, 20
*TODO: The links to page numbers are not working. Tested with TeX Live 2018, pdfTeX 3.14159265-2.6-1.40.19, beamer.cls v3.50 and makeindex v2.15.

[^0]: *Example from http://mathworld.wolfram.com/GraphDiameter.html .

[^1]: *Based on the discussion about how to draw trees in (Knuth 1997, § 2.3).

[^2]: *Image from the MacTutor History of Mathematics Archive.

