
Logic - CM0845
Introduction to Haskell

Diego Alejandro Montoya-Zapata

EAFIT University

Semester 2016-1

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 1 / 15

What is Haskell?

Haskell is a purely functional programming language. That means
that every function in Haskell is also a function in the mathematical
sense.

Example

factorial 0 = 1
factorial n = n * factorial (n - 1)

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 2 / 15

Functions

Example

factorial 0 = 1
factorial n = n * factorial (n - 1)

What is the type of this function?

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)

But −1 is an Integer, so...

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 3 / 15

Functions

Example

factorial 0 = 1
factorial n = n * factorial (n - 1)

What is the type of this function?

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)

But −1 is an Integer, so...

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 3 / 15

Functions

Example

factorial 0 = 1
factorial n = n * factorial (n - 1)

What is the type of this function?

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)

But −1 is an Integer, so...

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 3 / 15

Functions

Example

factorial 0 = 1
factorial n = n * factorial (n - 1)

What is the type of this function?

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)

But −1 is an Integer, so...

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 3 / 15

Functions

A solution for this bug:

factorial :: Int -> Int
factorial n
| n == 0 = 1
| n > 0 = n * factorial (n - 1)
| otherwise = error "factorial: n < 0"

There are more than you believe!

Google for “The evolution of a Haskell programmer”.

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 4 / 15

Functions

A solution for this bug:

factorial :: Int -> Int
factorial n
| n == 0 = 1
| n > 0 = n * factorial (n - 1)
| otherwise = error "factorial: n < 0"

There are more than you believe!

Google for “The evolution of a Haskell programmer”.

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 4 / 15

Lists

Inductive definition Haskell has a built-in syntax for lists, where a list
is either:

the empty list, written [], or
an element x and a list xs, written (x : xs).

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 5 / 15

Lists

Example - Pattern matching on lists

length :: [Int] -> Int
length [] = 0
length (x : xs) = 1 + length xs

What if one wanted to get the length of a list of Booleans?

length :: [Bool] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Take it easy, there’s another solution!

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 6 / 15

Lists

Example - Pattern matching on lists

length :: [Int] -> Int
length [] = 0
length (x : xs) = 1 + length xs

What if one wanted to get the length of a list of Booleans?

length :: [Bool] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Take it easy, there’s another solution!

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 6 / 15

Lists

Example - Pattern matching on lists

length :: [Int] -> Int
length [] = 0
length (x : xs) = 1 + length xs

What if one wanted to get the length of a list of Booleans?

length :: [Bool] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Take it easy, there’s another solution!

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 6 / 15

Lists

Example - Pattern matching on lists

length :: [Int] -> Int
length [] = 0
length (x : xs) = 1 + length xs

What if one wanted to get the length of a list of Booleans?

length :: [Bool] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Take it easy, there’s another solution!

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 6 / 15

Parametric Polymorphism

Example - Basic functions

-- Returns the length of a finite list as an Int.
length :: [a] -> Int

-- Appends two lists.
(++) :: [a] -> [a] -> [a]

-- Extracts the first element of a list.
head :: [a] -> a

-- Extracts the last element of a list.
last :: [a] -> a

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 7 / 15

Example - Basic functions

-- Extracts the elements after the head of a list.
tail :: [a] -> [a]

-- Returns all the elements of a list except
-- the last one.
init :: [a] -> [a]

-- Testes if a list is empty.
null :: [a] -> Bool

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 8 / 15

Lazy

Haskell wont’t execute functions or calculate things until necessary.

Example

foo :: Int -> Bool -- Non-terminating function.
foo n = foo (n + 1)

bar :: Int -> Bool
bar n = True || foo n

bar’ :: Int -> Bool
bar’ n = foo n || True

Try to calculate bar 3.
Try to calculate bar’ 3.

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 9 / 15

Lazy

Haskell wont’t execute functions or calculate things until necessary.

Example

foo :: Int -> Bool -- Non-terminating function.
foo n = foo (n + 1)

bar :: Int -> Bool
bar n = True || foo n

bar’ :: Int -> Bool
bar’ n = foo n || True

Try to calculate bar 3.

Try to calculate bar’ 3.

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 9 / 15

Lazy

Haskell wont’t execute functions or calculate things until necessary.

Example

foo :: Int -> Bool -- Non-terminating function.
foo n = foo (n + 1)

bar :: Int -> Bool
bar n = True || foo n

bar’ :: Int -> Bool
bar’ n = foo n || True

Try to calculate bar 3.
Try to calculate bar’ 3.

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 9 / 15

High-Order Functions and Currying

Every function in Haskell officially only takes one parameter. So how
can we define a function that takes more than a parameter?

-- Takes two things that can be ordered and
returns the greater one.
max :: (Ord a) => a -> a -> a

Example
max 2 3

(max 2) 3

Haskell functions can take functions as parameters and return
functions as return values!

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 10 / 15

High-Order Functions and Currying

Every function in Haskell officially only takes one parameter. So how
can we define a function that takes more than a parameter?

-- Takes two things that can be ordered and
returns the greater one.
max :: (Ord a) => a -> a -> a

Example
max 2 3

(max 2) 3

Haskell functions can take functions as parameters and return
functions as return values!

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 10 / 15

High-Order Functions and Currying

Every function in Haskell officially only takes one parameter. So how
can we define a function that takes more than a parameter?

-- Takes two things that can be ordered and
returns the greater one.
max :: (Ord a) => a -> a -> a

Example
max 2 3

(max 2) 3

Haskell functions can take functions as parameters and return
functions as return values!

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 10 / 15

High-Order Functions

Example

-- map f xs is the list obtained by applying f
-- to each element of xs.
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

Which is the value of map (*2) [1, 2, 4]?

GHCi> map (*2) [1, 2, 4]
[2,4,8]

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 11 / 15

High-Order Functions

Example

-- map f xs is the list obtained by applying f
-- to each element of xs.
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

Which is the value of map (*2) [1, 2, 4]?

GHCi> map (*2) [1, 2, 4]
[2,4,8]

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 11 / 15

Example

-- foldr, applied to a binary operator, a starting
-- value and a list, reduces the list using th
-- binary operator, from right to left (see also
-- foldl):
-- foldr f z [x1, x2, ..., xn] ==
-- x1 ‘f‘ (x2 ‘f‘ ... (xn ‘f‘ z)...)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

GHCi> foldr (*) 1 [1..5]
120

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 12 / 15

Example

-- foldr, applied to a binary operator, a starting
-- value and a list, reduces the list using th
-- binary operator, from right to left (see also
-- foldl):
-- foldr f z [x1, x2, ..., xn] ==
-- x1 ‘f‘ (x2 ‘f‘ ... (xn ‘f‘ z)...)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

GHCi> foldr (*) 1 [1..5]
120

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 12 / 15

Creating Types - Algebraic Data Types

Example

data Bool = True | False

Functions by pattern-matching

(||) :: Bool -> Bool -> Bool
True || _ = True
False || x = x

(&&) :: Bool -> Bool -> Bool
False && _ = False
True && x = x

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 13 / 15

Creating Types - Algebraic Data Types

Example

-- Recursive data type.
data Nat = Zero | Succ Nat

Functions by pattern-matching

(+) :: Nat -> Nat -> Nat
Zero + n = n
(Succ m) + n = Succ (m + n)

Example

-- Polymorphic data type.
data List a = Nil | Cons a (List a)

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 14 / 15

Some Links

Real-World Applications

See http://www.haskell.org/haskellwiki/Haskell_
in_industry.

Nice Tutorial

See http://learnyouahaskell.com.

Downloading

See https://www.haskell.org/downloads.

Diego Alejandro Montoya-Zapata (EAFIT University)Logic - CM0845 Introduction to Haskell Semester 2016-1 15 / 15

http://www.haskell.org/haskellwiki/Haskell_in_industry
http://www.haskell.org/haskellwiki/Haskell_in_industry
http://learnyouahaskell.com
https://www.haskell.org/downloads

