CM0845 Logic
 First-Order Logic: Syntax

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2016-1

First-Order Logic: Syntax

Remark

The references for this section are van Dalen [2013, § 3.1, § 3.2 and § 3.3].

Introduction

Example

Informal examples [van Dalen 2013, p. 53]:
$\exists x P(x)$
there is an x with property P
$\forall y P(y)$
for all $y P$ holds (all y have the property P)
$\forall x \exists y(x=2 y)$
for all x there is a y such that x is two times y
$\forall \epsilon(\epsilon>0 \rightarrow \exists n(n<\epsilon))$
for all positive there is an n such that $n<\epsilon$
$x<y \rightarrow \exists z(x<z \wedge z<y) \quad$ if $x<y$, then there is a z such that $x<z$ and $z<y$
$\forall x \exists y(x . y=1)$
for each x there exists an inverse y

Structures

Definition

A structure is an ordered sequence

$$
\left\langle A, R_{1}, \ldots, R_{n}, F_{1}, \ldots, F_{m},\left\{c_{i} \mid i \in I\right\}\right\rangle,
$$

where
(i) A is a non-empty set, the universe of the structure,
(ii) R_{1}, \ldots, R_{n} are relations on A,
(iii) F_{1}, \ldots, F_{m} are functions on A, and
(iv) the c_{i}, where $i \in I$, are elements of A (constants).

Notation

- Structures are denoted by Gothic capitals: $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \ldots$
- $A=|\mathfrak{A}|$

Structures

Examples

Whiteboard.

Structures

Definition

The similarity type (or signature or non-logical constants) of a structure

$$
\left\langle A, R_{1}, \ldots, R_{n}, F_{1}, \ldots, F_{m},\left\{c_{i} \mid i \in I\right\}\right\rangle
$$

is a sequence

$$
\left\langle r_{1}, \ldots, r_{n} ; a_{1}, \ldots, a_{m} ; \kappa\right\rangle,
$$

where
(i) $R_{i} \subseteq A^{r_{i}}$,
(ii) $F_{j}: A^{a_{j}} \rightarrow A$, and
(iii) $\kappa=\left|\left\{c_{i} \mid i \in I\right\}\right|$ (cardinality of I).

Structures

Examples

Whiteboard.

Structures

Examples
Whiteboard.

Limiting cases
0 -ary relations and 0 -ary functions.

Structures

```
Examples
Whiteboard.
Limiting cases
0-ary relations and 0-ary functions.
Convention
All the structures are equipped implicitly with the identity relation.
```


Alphabet

Definition

The alphabet has the following symbols:
(i) Predicate symbols: P_{1}, \ldots, P_{n} and \doteq
(ii) Function symbols: f_{1}, \ldots, f_{m}
(iii) Constant symbols: \bar{c}_{i} for $i \in I$
(iv) Variables: $x_{0}, x_{1}, x_{2}, \ldots$ (countably many)
(v) Connectives: $\vee, \wedge, \rightarrow, \neg, \leftrightarrow, \perp, \forall, \exists$
(vi) Auxiliary symbols: (,)

Alphabet

Definition

The alphabet has the following symbols:
(i) Predicate symbols: P_{1}, \ldots, P_{n} and \doteq
(ii) Function symbols: f_{1}, \ldots, f_{m}
(iii) Constant symbols: \bar{c}_{i} for $i \in I$
(iv) Variables: $x_{0}, x_{1}, x_{2}, \ldots$ (countably many)
(v) Connectives: $\vee, \wedge, \rightarrow, \neg, \leftrightarrow, \perp, \forall, \exists$
(vi) Auxiliary symbols: (,)

Remark
The equality symbol.

The Set of Terms

Definition

The set of terms, denoted TERM, is the smallest set X with the properties:
(i) $x_{i} \in X$, where $i \in \mathbb{N}$,
(ii) $\bar{c}_{i} \in X$, where $i \in I$, and
(iii) $t_{1}, \ldots, t_{a_{i}} \in X \Rightarrow f_{i}\left(t_{1}, \ldots, t_{a_{i}}\right) \in X$, for $1 \leq i \leq m$.

The Set of Terms

Definition

The set of terms, denoted TERM, is the smallest set X with the properties:
(i) $x_{i} \in X$, where $i \in \mathbb{N}$,
(ii) $\bar{c}_{i} \in X$, where $i \in I$, and
(iii) $t_{1}, \ldots, t_{a_{i}} \in X \Rightarrow f_{i}\left(t_{1}, \ldots, t_{a_{i}}\right) \in X$, for $1 \leq i \leq m$.

Examples

Whiteboard.

The Set of Formulae

Definition

The set of formulae, denoted FORM, is the smallest set X with the properties:
(i) $\perp \in X$,
(ii) $P_{i} \in X$ if $r_{i}=0$,
(iii) $t_{1}, \ldots, t_{r_{i}} \in$ TERM $\Rightarrow P_{i}\left(t_{1}, \ldots, t_{r_{i}}\right) \in X$,
(iv) $t_{1}, t_{2} \in \mathrm{TERM} \Rightarrow t_{1} \doteq t_{2} \in X$,
(v) $\varphi, \psi \in X \Rightarrow(\varphi \square \psi) \in X$, where $\square \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$,
(vi) $\varphi \in X \Rightarrow(\neg \varphi) \in X$,
(vii) $\varphi \in X \Rightarrow\left(\left(\forall x_{i}\right) \varphi\right) \in X$ and
(viii) $\varphi \in X \Rightarrow\left(\left(\exists x_{i}\right) \varphi\right) \in X$.

The formulae defined in the four first items are called atomic formulae or atoms.

Notational Conventions

- We use the conventions of propositional logic.
- We delete the outer brackets and the brackets round $\forall x$ and $\exists x$ whenever possible.
- Quantifiers bind more strongly than binary connectives.
- Join strings of quantifiers, e.g. $\forall x_{1} x_{2} \exists x_{3} x_{4} \varphi$ stands for $\forall x_{1} \forall x_{2} \exists x_{3} \exists x_{4} \varphi$.

Notational Conventions

- We use the conventions of propositional logic.
- We delete the outer brackets and the brackets round $\forall x$ and $\exists x$ whenever possible.
- Quantifiers bind more strongly than binary connectives.
- Join strings of quantifiers, e.g. $\forall x_{1} x_{2} \exists x_{3} x_{4} \varphi$ stands for $\forall x_{1} \forall x_{2} \exists x_{3} \exists x_{4} \varphi$.

Examples
Whiteboard.

Induction Principles and Recursive Definitions

Remark

Given that TERM and FORM are set inductively defined, we have induction principles and recursive definitions on them.

Set of Free Variables of a Term

Definition

The set of free variables of a term \boldsymbol{t}, denoted $\mathrm{FV}(t)$, is defined by

$$
\begin{aligned}
\mathrm{FV} & : \operatorname{TERM} \rightarrow\left\{x_{i} \mid i \in \mathbb{N}\right\} \\
\mathrm{FV}\left(x_{i}\right) & =\left\{x_{i}\right\}, \\
\mathrm{FV}\left(\bar{c}_{i}\right) & =\emptyset \\
\mathrm{FV}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & =\mathrm{FV}\left(t_{1}\right) \cup \cdots \cup \mathrm{FV}\left(t_{n}\right) .
\end{aligned}
$$

Closed Terms

Definition

A term t is closed iff $\mathrm{FV}(t)=\emptyset$. The set of closed terms is denoted by $\mathrm{TERM}_{\mathrm{c}}$.
Examples
Whiteboard.

Set of Free Variables of a Formula

Definition

The set of free variables of a formula $\boldsymbol{\varphi}$, denoted $\operatorname{FV}(\varphi)$, is defined by

$$
\begin{aligned}
\mathrm{FV} & : \mathrm{FORM} \rightarrow\left\{x_{i} \mid i \in \mathbb{N}\right\} \\
\mathrm{FV}(\perp) & =\emptyset \\
\mathrm{FV}(P) & =\emptyset, \text { for } P \text { propositional symbol } \\
\mathrm{FV}\left(P\left(t_{1}, \ldots, t_{n}\right)\right) & =\mathrm{FV}\left(t_{1}\right) \cup \cdots \cup \mathrm{FV}\left(t_{n}\right), \\
\mathrm{FV}\left(t_{1} \doteq t_{2}\right) & =\mathrm{FV}\left(t_{1}\right) \cup \mathrm{FV}\left(t_{2}\right), \\
\mathrm{FV}(\varphi \square \psi) & =\mathrm{FV}(\varphi) \cup \mathrm{FV}(\psi), \\
\mathrm{FV}(\neg \varphi) & =\mathrm{FV}(\varphi), \\
\mathrm{FV}\left(\forall x_{i} \varphi\right)=\mathrm{FV}\left(\exists x_{i} \varphi\right) & =\mathrm{FV}(\varphi)-\left\{x_{i}\right\} .
\end{aligned}
$$

Sentences

Definition

A formula φ is closed iff $\mathrm{FV}(\varphi)=\emptyset$. A closed formula is also called a sentence. The set of sentences is denoted by SENT.

Examples
Whiteboard.

Free Terms for a Variable in a Formula

Definition

A term \boldsymbol{t} is free for a variable \boldsymbol{x} in a formula φ iff
(i) φ is atomic,
(ii) $\varphi:=\neg \psi$ and t is free for x in ψ,
(iii) $\varphi:=\varphi_{1} \square \varphi_{2}$ and t is free for x in φ_{1} and φ_{2},
(iv) $\varphi:=\forall y \psi$ and if $x \in \mathrm{FV}(\varphi)$, then $y \notin \mathrm{FV}(t)$ and t is free for x in ψ, or
(v) $\varphi:=\exists y \psi$ and if $x \in \mathrm{FV}(\varphi)$, then $y \notin \mathrm{FV}(t)$ and t is free for x in ψ.

The Extended Language

Definition

The extended language, $L(\mathfrak{A})$, of \mathfrak{A} is obtained from the language L, of the type of \mathfrak{A}, by adding constant symbols for all elements of $|\mathfrak{A}|$. We denote the constant symbol, belonging to $a \in|\mathfrak{A}|$, by \bar{a}.

The Extended Language

Definition

The extended language, $L(\mathfrak{A})$, of \mathfrak{A} is obtained from the language L, of the type of \mathfrak{A}, by adding constant symbols for all elements of $|\mathfrak{A}|$. We denote the constant symbol, belonging to $a \in|\mathfrak{A}|$, by \bar{a}.

Examples
Whiteboard.

References

van Dalen, Dirk [1980] (2013). Logic and Structure. 5th ed. Springer (cit. on pp. 2, 3).

