CM0845 Logic First-Order Logic: Syntax

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2016-1

First-Order Logic: Syntax

Remark

The references for this section are van Dalen [2013, § 3.1, § 3.2 and § 3.3].

Introduction

Example

Informal examples [van Dalen 2013, p. 53]:

- $\exists x P(x)$ there is an x with property P
- $\forall y P(y)$ for all y P holds (all y have the property P)
- $\forall x \exists y (x = 2y)$ for all x there is a y such that x is two times y
- $\forall \epsilon (\epsilon > 0 \rightarrow \exists n (n < \epsilon)) \qquad \ \ \text{for all positive there is an } n \text{ such that } n < \epsilon$

 $x < y \rightarrow \exists z (x < z \land z < y)$ if x < y, then there is a z such that x < z and z < y

 $\forall x \exists y (x.y=1) \qquad \qquad \text{for each } x \text{ there exists an inverse } y$

Definition

A structure is an ordered sequence

$$\langle A, R_1, \ldots, R_n, F_1, \ldots, F_m, \{c_i \mid i \in I\} \rangle,$$

where

(i) A is a non-empty set, the **universe** of the structure,

```
(ii) R_1, \ldots, R_n are relations on A,
```

```
(iii) F_1, \ldots, F_m are functions on A, and
```

```
(iv) the c_i, where i \in I, are elements of A (constants).
```

Notation

- \bullet Structures are denoted by Gothic capitals: $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \ldots$
- $\bullet \ A = |\mathfrak{A}|$

Examples Whiteboard.

Definition

The similarity type (or signature or non-logical constants) of a structure

$$\langle A, R_1, \ldots, R_n, F_1, \ldots, F_m, \{c_i \mid i \in I\} \rangle$$

is a sequence

$$\langle r_1,\ldots,r_n;a_1,\ldots,a_m;\kappa\rangle,$$

where

(i) $R_i \subseteq A^{r_i}$, (ii) $F_j : A^{a_j} \to A$, and (iii) $\kappa = |\{c_i \mid i \in I\}|$ (cardinality of I).

Examples Whiteboard.

Examples

White board.

Limiting cases

 $0\text{-}\mathsf{ary}$ relations and $0\text{-}\mathsf{ary}$ functions.

Examples

Whiteboard.

Limiting cases

 $0\text{-}\mathsf{ary}$ relations and $0\text{-}\mathsf{ary}$ functions.

Convention

All the structures are equipped implicitly with the identity relation.

Alphabet

Definition

The **alphabet** has the following symbols:

- (i) Predicate symbols: P_1, \ldots, P_n and \doteq
- (ii) Function symbols: f_1, \ldots, f_m
- (iii) Constant symbols: \overline{c}_i for $i \in I$
- (iv) Variables: x_0, x_1, x_2, \ldots (countably many)
- (v) Connectives: $\lor, \land, \rightarrow, \neg, \leftrightarrow, \bot, \forall, \exists$
- (vi) Auxiliary symbols: (,)

Alphabet

Definition

The **alphabet** has the following symbols:

- (i) Predicate symbols: P_1, \ldots, P_n and \doteq
- (ii) Function symbols: f_1, \ldots, f_m
- (iii) Constant symbols: \overline{c}_i for $i \in I$
- (iv) Variables: x_0, x_1, x_2, \ldots (countably many)
- (v) Connectives: $\lor, \land, \rightarrow, \neg, \leftrightarrow, \bot, \forall, \exists$
- (vi) Auxiliary symbols: (,)

Remark

The equality symbol.

The set of terms, denoted TERM, is the smallest set X with the properties:

(i) $x_i \in X$, where $i \in \mathbb{N}$, (ii) $\overline{c}_i \in X$, where $i \in I$, and (iii) $t_1, \ldots, t_{a_i} \in X \Rightarrow f_i(t_1, \ldots, t_{a_i}) \in X$, for $1 \le i \le m$.

The set of terms, denoted TERM, is the smallest set X with the properties:

(i) $x_i \in X$, where $i \in \mathbb{N}$, (ii) $\overline{c}_i \in X$, where $i \in I$, and (iii) $t_1, \ldots, t_{a_i} \in X \Rightarrow f_i(t_1, \ldots, t_{a_i}) \in X$, for $1 \le i \le m$.

Examples

The set of formulae, denoted FORM, is the smallest set X with the properties:

(i) $\perp \in X$. (ii) $P_i \in X$ if $r_i = 0$. (iii) $t_1, \ldots, t_{r_i} \in \text{TERM} \Rightarrow P_i(t_1, \ldots, t_{r_i}) \in X$, (iv) $t_1, t_2 \in \text{TERM} \Rightarrow t_1 \doteq t_2 \in X$. (v) $\varphi, \psi \in X \Rightarrow (\varphi \Box \psi) \in X$, where $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, (vi) $\varphi \in X \Rightarrow (\neg \varphi) \in X$. (vii) $\varphi \in X \Rightarrow ((\forall x_i)\varphi) \in X$ and (viii) $\varphi \in X \Rightarrow ((\exists x_i)\varphi) \in X.$

The formulae defined in the four first items are called atomic formulae or atoms.

Notational Conventions

- ▶ We use the conventions of propositional logic.
- ▶ We delete the outer brackets and the brackets round $\forall x$ and $\exists x$ whenever possible.
- Quantifiers bind more strongly than binary connectives.
- ▶ Join strings of quantifiers, e.g. $\forall x_1x_2 \exists x_3x_4\varphi$ stands for $\forall x_1 \forall x_2 \exists x_3 \exists x_4\varphi$.

Notational Conventions

- We use the conventions of propositional logic.
- ▶ We delete the outer brackets and the brackets round $\forall x$ and $\exists x$ whenever possible.
- Quantifiers bind more strongly than binary connectives.
- ▶ Join strings of quantifiers, e.g. $\forall x_1x_2 \exists x_3x_4\varphi$ stands for $\forall x_1 \forall x_2 \exists x_3 \exists x_4\varphi$.

Examples

Remark

Given that ${\rm TERM}$ and ${\rm FORM}$ are set inductively defined, we have induction principles and recursive definitions on them.

The set of free variables of a term t, denoted FV(t), is defined by

 $FV : TERM \to \{x_i \mid i \in \mathbb{N}\}$ $FV(x_i) = \{x_i\},$ $FV(\overline{c}_i) = \emptyset,$ $FV(f(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n).$

Closed Terms

Definition

A term t is closed iff $FV(t) = \emptyset$. The set of closed terms is denoted by $TERM_c$.

Examples

The set of free variables of a formula φ , denoted $FV(\varphi)$, is defined by

 $FV : FORM \to \{x_i \mid i \in \mathbb{N}\}$ $FV(\bot) = \emptyset$ $FV(P) = \emptyset, \text{ for } P \text{ propositional symbol}$ $FV(P(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n),$ $FV(t_1 \doteq t_2) = FV(t_1) \cup FV(t_2),$ $FV(\varphi \Box \psi) = FV(\varphi) \cup FV(\psi),$ $FV(\neg \varphi) = FV(\varphi),$ $FV(\forall x_i \varphi) = FV(\exists x_i \varphi) = FV(\varphi) - \{x_i\}.$

Sentences

Definition

A formula φ is **closed** iff $FV(\varphi) = \emptyset$. A closed formula is also called a sentence. The set of sentences is denoted by SENT.

Examples

A term t is free for a variable x in a formula φ iff

- (i) φ is atomic,
- (ii) $\varphi := \neg \psi$ and t is free for x in ψ ,
- (iii) $\varphi := \varphi_1 \Box \varphi_2$ and t is free for x in φ_1 and φ_2 ,
- (iv) $\varphi := \forall y \psi$ and if $x \in FV(\varphi)$, then $y \notin FV(t)$ and t is free for x in ψ , or
- (v) $\varphi := \exists y \psi$ and if $x \in FV(\varphi)$, then $y \notin FV(t)$ and t is free for x in ψ .

The extended language, $L(\mathfrak{A})$, of \mathfrak{A} is obtained from the language L, of the type of \mathfrak{A} , by adding constant symbols for all elements of $|\mathfrak{A}|$. We denote the constant symbol, belonging to $a \in |\mathfrak{A}|$, by \overline{a} .

The extended language, $L(\mathfrak{A})$, of \mathfrak{A} is obtained from the language L, of the type of \mathfrak{A} , by adding constant symbols for all elements of $|\mathfrak{A}|$. We denote the constant symbol, belonging to $a \in |\mathfrak{A}|$, by \overline{a} .

Examples

References

van Dalen, Dirk [1980] (2013). Logic and Structure. 5th ed. Springer (cit. on pp. 2, 3).