CM0832 Elements of Set Theory
 3. Relations and Functions

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2017-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Enderton 1977].

Ordered Pairs

Remark

Let a and b be sets. An ordered pair $\langle a, b\rangle$ should be a set such that

$$
\langle a, b\rangle=\langle c, d\rangle \quad \text { iff } \quad a=c \wedge b=d
$$

Definition
We define an ordered pair using Kuratowski's definition, that is,

$$
\langle a, b\rangle:=\{\{a\},\{a, b\}\} .
$$

Ordered Pairs

Example

We show that $\langle\emptyset,\{\emptyset\}\rangle \neq\langle\{\emptyset\}, \emptyset\rangle$.

$$
\begin{aligned}
\langle\emptyset,\{\emptyset\}\rangle & =\{\{\emptyset\},\{\emptyset,\{\emptyset\}\}\} \\
& =\{\{\emptyset\},\{\{\emptyset\}, \emptyset\}\} \\
& \neq\{\{\{\emptyset\}\},\{\{\emptyset\}, \emptyset\}\} \\
& =\langle\{\emptyset\}, \emptyset\rangle .
\end{aligned}
$$

Ordered Pairs

Example

Let a be a set. Then

$$
\begin{aligned}
\langle a, a\rangle & =\{\{a\},\{a, a\}\} \\
& =\{\{a\},\{a\}\} \\
& =\{\{a\}\} .
\end{aligned}
$$

Ordered Pairs

Example

Let a be a set. Then

$$
\begin{aligned}
\langle a, a\rangle & =\{\{a\},\{a, a\}\} \\
& =\{\{a\},\{a\}\} \\
& =\{\{a\}\} .
\end{aligned}
$$

Exercise

To give a different definition of ordered pair.

Cartesian Product

Definition
Let A and B be sets. The Cartesian product of A and B is defined by

$$
A \times B:=\{\langle x, y\rangle \mid x \in A \wedge y \in B\} .
$$

Cartesian Product

Definition
Let A and B be sets. The Cartesian product of A and B is defined by

$$
A \times B:=\{\langle x, y\rangle \mid x \in A \wedge y \in B\} .
$$

Remark

Let A and B be sets. Note that $A \times B$ is a set because we can define it via the subset axiom scheme.

$$
A \times B:=\{\langle x, y\rangle \in \mathcal{P} \mathcal{P}(A \cup B) \mid x \in A \wedge y \in B\}
$$

Relations

Definition
A relation is a set of ordered pairs.

Relations

Definition
A relation is a set of ordered pairs.

Notation

Let R be a relation. We can write $\langle a, b\rangle \in R$ or $a R b$.

Relations

Definition
A relation is a set of ordered pairs.

Notation

Let R be a relation. We can write $\langle a, b\rangle \in R$ or $a R b$.
Example
Let R the relation defined by $R=\{\langle a, b\rangle,\langle b, b\rangle,\langle c, b\rangle\}$. Diagram: whiteboard.

Relations

Definition
A relation is a set of ordered pairs.

Notation

Let R be a relation. We can write $\langle a, b\rangle \in R$ or $a R b$.

Example

Let R the relation defined by $R=\{\langle a, b\rangle,\langle b, b\rangle,\langle c, b\rangle\}$. Diagram: whiteboard.

Example

Let $\omega=\{0,1,2, \ldots\}$. The identity relation on ω is defined by

$$
\begin{aligned}
\mathrm{I}_{\omega} & :=\{\langle n, n\rangle \mid n \in \omega\} \\
& =\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle, \ldots\} .
\end{aligned}
$$

Relations

Definition
Let R be a relation. We define the domain, the range and the field of R by

$$
\begin{aligned}
\operatorname{dom} R & :=\{x \mid \exists y(\langle x, y\rangle \in R)\}, \\
\operatorname{ran} R & :=\{y \mid \exists x(\langle x, y\rangle \in R)\}, \\
\operatorname{fld} R & :=\operatorname{dom} R \cup \operatorname{ran} R .
\end{aligned}
$$

Relations

Definition

Let R be a relation. We define the domain, the range and the field of R by

$$
\begin{aligned}
\operatorname{dom} R & :=\{x \mid \exists y(\langle x, y\rangle \in R)\}, \\
\operatorname{ran} R & :=\{y \mid \exists x(\langle x, y\rangle \in R)\}, \\
\operatorname{fld} R & :=\operatorname{dom} R \cup \operatorname{ran} R .
\end{aligned}
$$

Remark
Let R be a relation. Note that $\operatorname{dom} R$ and $\operatorname{ran} R$ are sets because we can define them via the subset axiom scheme.

$$
\begin{aligned}
\operatorname{dom} R & :=\{x \in \bigcup \bigcup R \mid \exists y(\langle x, y\rangle \in R)\} \\
\operatorname{ran} R & :=\{y \in \bigcup \bigcup R \mid \exists x(\langle x, y\rangle \in R)\} .
\end{aligned}
$$

n-Ary Relations

Definition
We define an ordered n-tuple, for $n \geq 3$, by

$$
\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle:=\left\langle\left\langle x_{1}, x_{2}, \ldots, x_{n-1}\right\rangle, x_{n}\right\rangle
$$

n-Ary Relations

Definition

We define an ordered n-tuple, for $n \geq 3$, by

$$
\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle:=\left\langle\left\langle x_{1}, x_{2}, \ldots, x_{n-1}\right\rangle, x_{n}\right\rangle
$$

Example
Ordered triple (3-tuple) and ordered quadruple (4-tuple).

$$
\begin{aligned}
\left\langle x_{1}, x_{2}, x_{3}\right\rangle & :=\left\langle\left\langle x_{1}, x_{2}\right\rangle, x_{3}\right\rangle, \\
\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle & :=\left\langle\left\langle x_{1}, x_{2}, x_{3}\right\rangle, x_{4}\right\rangle .
\end{aligned}
$$

n-Ary Relations

Definition

We define an ordered n-tuple, for $n \geq 3$, by

$$
\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle:=\left\langle\left\langle x_{1}, x_{2}, \ldots, x_{n-1}\right\rangle, x_{n}\right\rangle
$$

Example
Ordered triple (3-tuple) and ordered quadruple (4-tuple).

$$
\begin{aligned}
\left\langle x_{1}, x_{2}, x_{3}\right\rangle & :=\left\langle\left\langle x_{1}, x_{2}\right\rangle, x_{3}\right\rangle, \\
\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle & :=\left\langle\left\langle x_{1}, x_{2}, x_{3}\right\rangle, x_{4}\right\rangle .
\end{aligned}
$$

Definition
We define an 1-tuple by

$$
\langle x\rangle:=x .
$$

n-Ary Relations

Definition

Let A be a set. We define an n-ary relation on A to be a set of ordered n-tuples with all components in A.

n-Ary Relations

Definition

Let A be a set. We define an n-ary relation on A to be a set of ordered n-tuples with all components in A.

Example
Whiteboard.
Remark
Let A be a set. Note that an 1-ary relation on A is just a subset of A but it is not a relation.

Functions

Definition

A function (mapping or correspondence) is a relation F such that for each x in dom F there is only one y such that $x F y$.

Functions

Definition

A function (mapping or correspondence) is a relation F such that for each x in dom F there is only one y such that $x F y$.

Notation
We write $F: A \rightarrow B$ iff F is a function, $\operatorname{dom} F=A$ and $\operatorname{ran} F \subseteq B$.

Functions

Definition

A function (mapping or correspondence) is a relation F such that for each x in dom F there is only one y such that $x F y$.

Notation
We write $F: A \rightarrow B$ iff F is a function, $\operatorname{dom} F=A$ and $\operatorname{ran} F \subseteq B$.

Definition

Let F be a function and A and B sets.
(i) F is a function on (from) A iff $\operatorname{dom} F=A$.
(ii) F is a function into (to) B iff $\operatorname{ran} F \subseteq B$.
(iii) F is a function onto B iff $\operatorname{ran} F=B$.

Functions

Exercise 3.11

Prove the following version (for functions) of the extensionality principle: Assume that F and G are functions, $\operatorname{dom} F=\operatorname{dom} G$, and $F(x)=G(x)$ for all x in the common domain. Then $F=G$.

Functions

Definition

A function F is one-to-one (or injective) iff for each $y \in \operatorname{ran} F$ there is only one x such that $x F y$. In other words, if $x_{1}, x_{2} \in \operatorname{dom} F$ and $x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Functions

Definition

A function F is one-to-one (or injective) iff for each $y \in \operatorname{ran} F$ there is only one x such that $x F y$. In other words, if $x_{1}, x_{2} \in \operatorname{dom} F$ and $x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Example
Whiteboard.

Functions

Definition
A function F is one-to-one (or injective) iff for each $y \in \operatorname{ran} F$ there is only one x such that $x F y$. In other words, if $x_{1}, x_{2} \in \operatorname{dom} F$ and $x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Example
Whiteboard.
Definition
A function F is an one-to-one correspondence between A and B iff F is an one-to-one function from A onto B.

Functions

Definition

A function F is one-to-one (or injective) iff for each $y \in \operatorname{ran} F$ there is only one x such that $x F y$. In other words, if $x_{1}, x_{2} \in \operatorname{dom} F$ and $x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Example
Whiteboard.
Definition
A function F is an one-to-one correspondence between A and B iff F is an one-to-one function from A onto B.

Example

Whiteboard.

Functions

Definition

Let A, F and G be sets. We define, the inverse of F, the composition of F and G, the restriction of F to A and the image of A under F by

$$
\begin{array}{rlrl}
F^{-1}:=\{\langle y, x\rangle \mid x F y\} & & \text { (inverse of } F \text {) } \\
F \circ G & :=\{\langle x, y\rangle \mid \exists t(x G t \wedge t F y)\} & & \text { (composition of } F \text { and } G \text {) } \\
F \upharpoonright A:=\{\langle x, y\rangle \mid x \in A \wedge x F y\} & & \text { (restriction of } F \text { to } A \text {) } \\
F \llbracket A \rrbracket & :=\operatorname{ran}(F \upharpoonright A) & & \text { (image of } A \text { under } F \text {) } \\
& =\{y \mid \exists x(x \in A \wedge x F y)\} & &
\end{array}
$$

Functions

Example

Let

$$
F=\{\langle\emptyset, a\rangle,\langle\{\emptyset\}, b\rangle\} .
$$

Then

$$
\begin{aligned}
\operatorname{dom} F & =\{\emptyset,\{\emptyset\}\} \\
\operatorname{ran} F & =\{a, b\}, \\
F^{-1} & =\{\langle a, \emptyset\rangle,\langle b,\{\emptyset\}\rangle\}, \\
F \upharpoonright \emptyset & =\emptyset, \\
F \upharpoonright\{\emptyset\} & =\{\langle\emptyset, a\rangle\}, \\
F \llbracket\{\emptyset\} \rrbracket & =\{a\}, \\
F(\{\emptyset\}) & =b .
\end{aligned}
$$

F is a function,
F^{-1} is function iff $a \neq b$,

Functions

Exercise 3.18
Let R be the set

$$
\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 0,3\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\}
$$

To find $R \circ R, R \upharpoonright\{1\}, R^{-1} \upharpoonright\{1\}, R \llbracket\{1\} \rrbracket$ and $R^{-1} \llbracket\{1\} \rrbracket$.

Functions

Exercise 3.18
Let R be the set

$$
\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 0,3\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\} .
$$

To find $R \circ R, R \upharpoonright\{1\}, R^{-1} \upharpoonright\{1\}, R \llbracket\{1\} \rrbracket$ and $R^{-1} \llbracket\{1\} \rrbracket$.
Exercise (p. 44)
Let A, F and G be sets. Show that $F^{-1}, F \circ G, F \upharpoonright A$ and $F \llbracket A \rrbracket$ are sets.

Functions

Theorem 3E
Let F be a set. Then

$$
\operatorname{dom} F^{-1}=\operatorname{ran} F \quad \text { and } \quad \operatorname{ran} F^{-1}=\operatorname{dom} F
$$

If additionally F is a relation, then

$$
\left(F^{-1}\right)^{-1}=F
$$

Functions

Theorem 3G
Let F be an one-to-one function.

- If $x \in \operatorname{dom} F$, then

$$
F^{-1}(F(x))=x
$$

- If $y \in \operatorname{ran} F$, then

$$
F\left(F^{-1}(y)\right)=y
$$

Functions

Theorem 3H
Let F and G be functions. Then

- $F \circ G$ is a function,
- dom $(F \circ G)=\{x \in \operatorname{dom} G \mid G(x) \in \operatorname{dom} F\}$ and
- if $x \in \operatorname{dom}(F \circ G)$, then $(F \circ G)(x)=F(G(x))$.

Functions

Theorem 3I
Let F and G be sets. Then

$$
(F \circ G)^{-1}=G^{-1} \circ F^{-1} .
$$

Functions

Theorem 3J
Let F be a function $F: A \rightarrow B$ and $A \neq \emptyset$.
(i) There exists a function $G: B \rightarrow A$ (a "left inverse") such that $G \circ F$ is the identity function I_{A} on A iff the function F is one-to-one.
(ii) There exists a function $H: B \rightarrow A$ (a "right inverse") such that $F \circ H$ is the identity function I_{B} on B iff the function F maps A onto B.

Functions

Axiom of choice (first form)
For any relation R there is a function $H \subseteq R$ with $\operatorname{dom} H=\operatorname{dom} R$.

Functions

Axiom of choice (first form)
For any relation R there is a function $H \subseteq R$ with $\operatorname{dom} H=\operatorname{dom} R$.
Example
Whiteboard.

Functions

Axiom of choice (first form)
For any relation R there is a function $H \subseteq R$ with $\operatorname{dom} H=\operatorname{dom} R$.
Example
Whiteboard.
Remark
Is the axiom of choice accepted in constructive mathematics? (See, e.g. Martin-Löf [2006]).

Functions

Definition
Let A and B be sets. We define the set of functions from A into B by

$$
B^{A}:=\{F \mid F: A \rightarrow B\}=:{ }^{A} B
$$

Functions

Definition
Let A and B be sets. We define the set of functions from A into B by

$$
B^{A}:=\{F \mid F: A \rightarrow B\}=:{ }^{A} B
$$

Example

- $\{0,1\}^{\omega}$: The set of infinity binary sequences.

Functions

Definition

Let A and B be sets. We define the set of functions from A into B by

$$
B^{A}:=\{F \mid F: A \rightarrow B\}=:{ }^{A} B
$$

Example

- $\{0,1\}^{\omega}$: The set of infinity binary sequences.
- $\emptyset^{A}=\emptyset$ for $A \neq \emptyset$ (no function can have a non-empty domain and an empty range).

Functions

Definition

Let A and B be sets. We define the set of functions from A into B by

$$
B^{A}:=\{F \mid F: A \rightarrow B\}=:{ }^{A} B
$$

Example

- $\{0,1\}^{\omega}$: The set of infinity binary sequences.
- $\emptyset^{A}=\emptyset$ for $A \neq \emptyset$ (no function can have a non-empty domain and an empty range).
- $A^{\emptyset}=\{\emptyset\}$ for any set A (\emptyset is the only function with an empty domain).

Functions

Remark
Let A and B be sets. Note that B^{A} is a set because we can define it via the subset axiom scheme.

$$
B^{A}:=\{F \in \mathcal{P}(A \times B) \mid F: A \rightarrow B\}
$$

Families

Remark

Families is another way to express functions when the range of a function is more important than the function itself. We write functions as families when we want to put the emphasis on the values of the function rather in the function.*

[^0]
Families

Remark

Families is another way to express functions when the range of a function is more important than the function itself. We write functions as families when we want to put the emphasis on the values of the function rather in the function.*

Remark

The terminology and notation on families is not established.

[^1]
Families

Definition

Let I and X be sets. A family in X indexed by I is a function

$$
\begin{aligned}
& A: I \rightarrow X \\
& A=\left\{\left\langle i, A_{i}\right\rangle \mid i \in I \text { and } A_{i} \in X\right\},
\end{aligned}
$$

where $A_{i}:=A(i)$, for all $i \in I .^{*}$ The set I is the index set of the family.

[^2]
Families

Definition

Let I and X be sets. A family in X indexed by I is a function

$$
\begin{aligned}
& A: I \rightarrow X \\
& A=\left\{\left\langle i, A_{i}\right\rangle \mid i \in I \text { and } A_{i} \in X\right\},
\end{aligned}
$$

where $A_{i}:=A(i)$, for all $i \in I .^{*}$ The set I is the index set of the family.

Notation

The above family A is denoted by $\left\langle A_{i} \mid i \in I\right\rangle$ following to [Hrbacek and Jech (1978) 1999].

[^3]
Families

Definition
The union of a family $\left\langle A_{i} \mid i \in I\right\rangle$ is defined by

$$
\begin{aligned}
\bigcup_{i \in I} A_{i} & :=\bigcup\left\{A_{i} \mid i \in I\right\} \\
& =\left\{x \mid x \in A_{i} \text { for some } i \text { in } I\right\} .
\end{aligned}
$$

Families

Definition

The union of a family $\left\langle A_{i} \mid i \in I\right\rangle$ is defined by

$$
\begin{aligned}
\bigcup_{i \in I} A_{i} & :=\bigcup\left\{A_{i} \mid i \in I\right\} \\
& =\left\{x \mid x \in A_{i} \text { for some } i \text { in } I\right\} .
\end{aligned}
$$

Example
Whiteboard.

Families

Definition
The intersection of a family $\left\langle A_{i} \mid i \in I\right\rangle$ is defined by

$$
\begin{aligned}
\bigcap_{i \in I} A_{i} & :=\bigcap\left\{A_{i} \mid i \in I\right\} \\
& =\left\{x \mid x \in A_{i} \text { for every } i \text { in } I\right\} .
\end{aligned}
$$

Families

Definition

The intersection of a family $\left\langle A_{i} \mid i \in I\right\rangle$ is defined by

$$
\begin{aligned}
\bigcap_{i \in I} A_{i} & :=\bigcap\left\{A_{i} \mid i \in I\right\} \\
& =\left\{x \mid x \in A_{i} \text { for every } i \text { in } I\right\} .
\end{aligned}
$$

Example

Whiteboard.

Families

Definition
The Cartesian product (or generalised product) of a family $\left\langle A_{i} \mid i \in I\right\rangle$ is defined by

$$
\underset{i \in I}{X} A_{i}:=\left\{f \mid f: I \rightarrow \bigcup_{i \in I} A_{i} \text { and } \forall i\left(i \in I \rightarrow f(i) \in A_{i}\right)\right\}=: \prod_{i \in I} A_{i} .
$$

Families

Definition

The Cartesian product (or generalised product) of a family $\left\langle A_{i} \mid i \in I\right\rangle$ is defined by

$$
\underset{i \in I}{X} A_{i}:=\left\{f \mid f: I \rightarrow \bigcup_{i \in I} A_{i} \text { and } \forall i\left(i \in I \rightarrow f(i) \in A_{i}\right)\right\}=: \prod_{i \in I} A_{i}
$$

Example
Let $\left\langle A_{i} \mid i \in I\right\rangle$ be a family. If $A_{i}=B$ for all $i \in I$, then

$$
\begin{aligned}
\underset{i \in I}{X A_{i}} & =B^{I} \\
& =\{f \mid f: I \rightarrow B\} .
\end{aligned}
$$

Families

Example

The following example illustrates the generalisation of the Cartesian product.
Let X and Y be two sets. Recall that the Cartesian product of X and Y was defined by

$$
X \times Y:=\{\langle x, y\rangle \mid x \in X \wedge y \in Y\}
$$

(continued on next slide)

Families

Example (continuation)
Let $I=\{a, b\}$ be an index set and let $\left\langle Z_{i} \mid i \in I\right\rangle$ be a family where $Z_{a}=X$ and $Z_{b}=Y$. Then

$$
\underset{i \in I}{X} Z_{i}=\{f \mid f: I \rightarrow X \cup Y, \text { such that } f(a) \in X \text { and } f(b) \in Y\}
$$

Now, we can define the one-to-one correspondence

$$
\begin{gathered}
h: \underset{i \in I}{X} Z_{i} \rightarrow X \times Y \\
h(f)=\langle f(a), f(b)\rangle .
\end{gathered}
$$

Families
Axiom of choice (second form)
Let $\left\langle H_{i} \mid i \in I\right\rangle$ be a family. If $H(i) \neq \emptyset$ for all $i \in I$, then $\times_{i \in I} H(i) \neq \emptyset$.*

*Figure source: Enderton [1977, Fig. 11].

Equivalence Relations

Definition

Let R be a binary relation on a set A. The relation R is

- reflexive iff $x R x$ for all $x \in A$,

Equivalence Relations

Definition

Let R be a binary relation on a set A. The relation R is

- reflexive iff $x R x$ for all $x \in A$,
- symmetric iff $x R y$ implies $y R x$ for all $x, y \in A$ and

Equivalence Relations

Definition

Let R be a binary relation on a set A. The relation R is

- reflexive iff $x R x$ for all $x \in A$,
- symmetric iff $x R y$ implies $y R x$ for all $x, y \in A$ and
- transitive iff $x R y$ and $y R z$ imply $x R z$ for all $x, y, z \in A$.

Example

Whiteboard.

Equivalence Relations

Introduction

Whiteboard.

Equivalence Relations

Introduction
 Whiteboard.

Definition
Let R be a binary relation on a set A. The relation R is an equivalence relation iff R is reflexive, symmetric and transitive.

Equivalence Relations

Introduction
Whiteboard.
Definition
Let R be a binary relation on a set A. The relation R is an equivalence relation iff R is reflexive, symmetric and transitive.

Example
Whiteboard.

Equivalence Relations

Questions

- Let $A=\{a, e, i, o, u\}$. Is the equality relation on A an equivalence relation?

Equivalence Relations

Questions

- Let $A=\{a, e, i, o, u\}$. Is the equality relation on A an equivalence relation?
- Let $A \neq \emptyset$ be a set. Is the relation \emptyset on A an equivalence relation?

Equivalence Relations

Questions

- Let $A=\{a, e, i, o, u\}$. Is the equality relation on A an equivalence relation?
- Let $A \neq \emptyset$ be a set. Is the relation \emptyset on A an equivalence relation?
- Let A be a set. Is the relation $A \times A$ an equivalence relations?

Equivalence Relations

Questions

- Let $A=\{a, e, i, o, u\}$. Is the equality relation on A an equivalence relation?
- Let $A \neq \emptyset$ be a set. Is the relation \emptyset on A an equivalence relation?
- Let A be a set. Is the relation $A \times A$ an equivalence relations?
- Let A be a singleton. It is possible to define an equivalence relation on A ?

Equivalence Relations

Definition

The set $[x]_{R}$ is defined by

$$
[x]_{R}:=\{t \mid x R t\} .
$$

Equivalence Relations

Definition

The set $[x]_{R}$ is defined by

$$
[x]_{R}:=\{t \mid x R t\} .
$$

Definition

Let R be an equivalence relation on a set A and let $x \in \operatorname{fld} R$. The set $[x]_{R}$ is the equivalence class of $x($ modulo $R)$.

Notation
We write $[x]$ if the relation R is clear in the context.

Equivalence Relations

Definition

The set $[x]_{R}$ is defined by

$$
[x]_{R}:=\{t \mid x R t\} .
$$

Definition

Let R be an equivalence relation on a set A and let $x \in \operatorname{fld} R$. The set $[x]_{R}$ is the equivalence class of $x($ modulo $R)$.

Notation
We write $[x]$ if the relation R is clear in the context.

Example

Whiteboard.

Equivalence Relations

Theorem 3N

Let R be an equivalence relation on a set A and let $x, y \in A$. Then

$$
[x]_{R}=[y]_{R} \quad \text { iff } \quad x R y .
$$

Equivalence Relations

Theorem 3P
Let R be an equivalence relation on a set A. Then the set

$$
\left\{[x]_{R} \mid x \in A\right\}
$$

of all equivalence classes is a partition of the set A.

Equivalence Relations

Theorem 3P
Let R be an equivalence relation on a set A. Then the set

$$
\left\{[x]_{R} \mid x \in A\right\}
$$

of all equivalence classes is a partition of the set A.

Exercise 3.37

Assume that Π is a partition of a set A. Define the relation R_{Π} as follows:

$$
x R_{\Pi} y \quad \text { iff } \quad(\exists B \in \Pi)(x \in B \wedge y \in B) .
$$

Show that R_{Π} is an equivalence relation on A.

Equivalence Relations

Definition
Let R be an equivalence relation on a set A. The quotient set is defined by

$$
A / R:=\left\{[x]_{R} \mid x \in A\right\}
$$

Equivalence Relations

Definition

Let R be an equivalence relation on a set A. The quotient set is defined by

$$
A / R:=\left\{[x]_{R} \mid x \in A\right\}
$$

Definition

Let R be an equivalence relation on a set A. The natural map (or canonical map) is the function

$$
\begin{aligned}
f & : A \rightarrow A / R \\
f(x) & =[x]_{R} .
\end{aligned}
$$

Equivalence Relations

Definition

Let R be an equivalence relation on a set A. The quotient set is defined by

$$
A / R:=\left\{[x]_{R} \mid x \in A\right\}
$$

Definition

Let R be an equivalence relation on a set A. The natural map (or canonical map) is the function

$$
\begin{aligned}
f & : A \rightarrow A / R \\
f(x) & =[x]_{R} .
\end{aligned}
$$

Remark

Using the λ-notation we could define the natural map by the anonymous function $\lambda x .[x]_{R}$.

Linear Ordering Relations

Motivation
What means that R is an ordering relation on a set A ?

Linear Ordering Relations

Motivation

What means that R is an ordering relation on a set A ?

Definition

Let R be a binary relation on a set A. The relation R satisfies trichotomy if exactly one of the three alternatives

$$
x R y, \quad x=y \quad \text { or } \quad y R x
$$

holds for all $x, y \in A$.

Linear Ordering Relations

Definition
Let A be a set. A linear ordering (or total ordering) on A is a binary relation R on A such that:
(i) R is transitive relation and
(ii) R satisfies trichotomy.

Linear Ordering Relations

Definition
Let A be a set. A linear ordering (or total ordering) on A is a binary relation R on A such that:
(i) R is transitive relation and
(ii) R satisfies trichotomy.

Example

References

Drake, Frank R. (1974). Set Theory. An Introduction to Large Cardinals. Vol. 76. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company (cit. on pp. 47, 48).
Enderton, Herbert B. (1977). Elements of Set Theory. Academic Press (cit. on pp. 2, 45, 46, 57). Halmos, Paul R. (1960). Naive Set Theory. The University Series in Undergradete Mathematics. Van Nostrand Reinhold Company (cit. on pp. 47, 48).
Hamilton, A. G. [1982] (1992). Numbers, Sets and Axioms. The Apparatus of Mathematics. 2nd impression. Cambridge University Press (cit. on pp. 47, 48).
Hrbacek, Karel and Jech, Thomas [1978] (1999). Introduction to Set Theory. Third Edition, Revised and Expanded. Marcel Dekker (cit. on pp. 47, 48).
星 Martin-Löf, Per (2006). 100 Years of Zermelo's Axiom of Choice: What was the Problem with It? The Computer Journal 49.3, pp. 345-350. DOI: $10.1093 /$ comjnl/bxh162 (cit. on pp. 37-39).

[^0]: *Enderton [1977] do not use families, but 'only' functions.

[^1]: *Enderton [1977] do not use families, but 'only' functions.

[^2]: *See, e.g. Halmos [1960], Drake [1974] and Hamilton [(1982) 1992].

[^3]: *See, e.g. Halmos [1960], Drake [1974] and Hamilton [(1982) 1992].

