CM0832 Elements of Set Theory 7. Orderings and Ordinals

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2017-2

## Preliminaries

## Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Enderton 1977].

# Well-Orderings

### Definition

A well-ordering on A is a linear ordering on A with the further property that every non-empty subset of A has a least element.

# Well-Orderings

## Definition

A well-ordering on A is a linear ordering on A with the further property that every non-empty subset of A has a least element.

## Definition

A structure is a pair  $\langle A, R \rangle$  consisting of a set A and a binary relation R on A.

## Transfinite Induction Principle

Definition

Let < be some sort of ordering on A and  $t \in A$ . The initial segment up to t is the set

```
\operatorname{seg} t := \{ x \in A \mid x < t \}.
```

#### Definition

Let < be some sort of ordering on A and  $t \in A$ . The initial segment up to t is the set

 $\operatorname{seg} t := \{ x \in A \mid x < t \}.$ 

#### Transfinite induction principle

Let  $\langle A, < \rangle$  be a well-ordered structure and assume that B is a subset of A with the special property that for every t in A,

 $\operatorname{seg} t \subseteq B$  implies  $t \in B$ .

Then B coincides with A.

Definition

Let  $\langle A, < \rangle$  be a well-ordered structure and let B a set. The set of all functions from initial segments of  $\langle A, < \rangle$  into B is defined by

 $B^{A<} := \{ f \mid f : seg t \to B, \text{ for some } t \in A \}.$ 

#### Definition

Let  $\langle A, < \rangle$  be a well-ordered structure and let B a set. The set of all functions from initial segments of  $\langle A, < \rangle$  into B is defined by

$$B^{A<} := \{ f \mid f : seg t \to B, \text{ for some } t \in A \}.$$

#### Remark

Let  $\langle A, \langle \rangle$  be a well-ordered structure and let B a set. Note that  $B^{A<}$  is a set because we can define it via the subset axiom scheme.

 $B^{A<} := \{ f \in \mathcal{P}(A \times B) \mid f : \operatorname{seg} t \to B, \text{ for some } t \in A \}.$ 

## Transfinite Recursion Theorem

Transfinite recursion theorem (preliminary form, p. 175)

Let  $\langle A, < \rangle$  be a well-ordered structure and let  $G : B^{A <} \to B$ . Then there is a unique function F such that for any  $t \in A$ ,

 $F: A \to B$  $F(t) = G(F \upharpoonright \operatorname{seg} t).$ 

#### Replacement axiom scheme

For any propositional function  $\varphi(x, y)$ , not containing *B*, the following is an axiom:

 $\forall A \left[ \, \forall x \, (x \in A \to \exists ! y \, \varphi(x, y)) \to \exists B \, \forall y \, (y \in B \leftrightarrow \exists x \, (x \in A \land \varphi(x, y))) \, \right].$ 

#### Replacement axiom scheme

For any propositional function  $\varphi(x, y)$ , not containing *B*, the following is an axiom:

 $\forall A \left[ \forall x \left( x \in A \to \exists ! y \, \varphi(x, y) \right) \to \exists B \, \forall y \left( y \in B \leftrightarrow \exists x \left( x \in A \land \varphi(x, y) \right) \right) \right].$ 

#### Remark

We stated an axiom scheme.

### Replacement axiom scheme

For any propositional function  $\varphi(x, y)$ , not containing B, the following is an axiom:

 $\forall A \left[ \forall x \left( x \in A \to \exists ! y \, \varphi(x, y) \right) \to \exists B \, \forall y \left( y \in B \leftrightarrow \exists x \left( x \in A \land \varphi(x, y) \right) \right) \right].$ 

#### Remark

We stated an axiom scheme.

Abstraction from the replacement axiom scheme

 $\{\,y\mid\,\exists x\,(x\in A\wedge\varphi(x,y)\,\}\,\text{is a set}.$ 

### Replacement axiom scheme

For any propositional function  $\varphi(x,y)$ , not containing B, the following is an axiom:

 $\forall A \left[ \forall x \left( x \in A \to \exists ! y \, \varphi(x, y) \right) \to \exists B \, \forall y \left( y \in B \leftrightarrow \exists x \left( x \in A \land \varphi(x, y) \right) \right) \right].$ 

#### Remark

We stated an axiom scheme.

Abstraction from the replacement axiom scheme  $\{ y \mid \exists x (x \in A \land \varphi(x, y) \} \text{ is a set.} \}$ 

#### Remark

The propositional function  $\varphi$  can depend on other variables  $t_1, \ldots, t_k$ . In this case, we use  $\varphi(x, y, t_1, \ldots, t_k)$  and we universally quantify on variables  $t_1, \ldots, t_k$  when using the axiom scheme.

## Epsilon-Images\*

<sup>\*&#</sup>x27;The membership symbol ( $\in$ ) is not typographically the letter epsilon but originally it was, and the name "epsilon" persists.' [Enderton 1977, p. 182] Epsilon-Images

## Isomorphisms

Definition

Let  $\langle A, R \rangle$  and  $\langle B, S \rangle$  be two structures. An **isomorphism** from  $\langle A, R \rangle$  onto  $\langle B, S \rangle$  is a one-to-one function f from A onto B such that for all  $x, y \in A$ 

xRy iff f(x)Sf(y).

## Isomorphisms

## Theorem (Corollary 7H)

Let  $\alpha$  be the  $\in$ -image of a well-ordered structure  $\langle A, < \rangle$ . Then  $\alpha$  is a transitive set and  $\in_{\alpha}$  is a well ordering on  $\alpha$ , where

 $\in_A := \{ \langle x, y \rangle \in \alpha \times \alpha \mid x \in y \}.$ 

#### Idea

To assign a 'number' to each well-ordered structure that measures its 'length'. Two well-ordered structures should receive the same number, if and only if, they are isomorphic.

#### ldea

To assign a 'number' to each well-ordered structure that measures its 'length'. Two well-ordered structures should receive the same number, if and only if, they are isomorphic.

#### Theorem 7I

Two well-ordered structures are isomorphic iff they have the same  $\in$ -image.

Definition

Let < be a well-ordering on A. The ordinal number of  $\langle A, < \rangle$  is its  $\epsilon$ -image. An ordinal number is a set that is the ordinal number of some well-ordered structure.

Definition

A set A is well-ordered by the membership relation iff the relation

 $\in_A := \{ \langle x, y \rangle \in A \times A \mid x \in y \}$ 

is a well-ordering on A.

Definition

A set A is well-ordered by the membership relation iff the relation

 $\in_A := \{ \langle x, y \rangle \in A \times A \mid x \in y \}$ 

is a well-ordering on A.

## Definition (other definition of ordinal number)

A set A is an ordinal number iff [Hrbacek and Jech (1978) 1999, p. 107]:

- (i) The set is transitive.
- (ii) The set is well-ordered by the membership relation.

## Burali-Forti theorem (p. 194)

There is no set to which every ordinal number belongs.

# Well-Ordering Theorem

Well-ordering theorem (p. 196)

For any set A, there is a well-ordering on A

### Definition

Let A be a set. The **cardinal number** of A, denoted card A, is the least ordinal equinumerous to A.

### Definition

Let A be a set. The **cardinal number** of A, denoted card A, is the least ordinal equinumerous to A.

## Definition

An ordinal number is an **initial ordinal** iff it is not equinumerous to any smaller ordinal number.

### Definition

Let A be a set. The **cardinal number** of A, denoted card A, is the least ordinal equinumerous to A.

## Definition

An ordinal number is an **initial ordinal** iff it is not equinumerous to any smaller ordinal number.

#### Remark

Cardinal numbers and initial ordinals are the same numbers.

## Rank

## Idea

We want to define hierarchy of sets indexed by ordinals:

$$\begin{split} V_0 &= \emptyset, \\ V_{\alpha+1} &= \mathcal{P} V_{\alpha}, \text{ if } \alpha \text{ is a succesor ordinal,} \\ V_{\lambda} &= \bigcup_{\beta < \lambda} V_{\beta}, \text{ if } \lambda \text{ is a limit ordinal.} \end{split}$$

# Regularity Axiom

## Regularity (foundation) axiom

Every non-empty set A has a member m with  $m \cap A = \emptyset$ , that is,

 $\forall A \, [ \, A \neq \emptyset \to \exists m \, (m \in A \land m \cap A = \emptyset) \, ].$ 

## References



Enderton, Herbert B. (1977). Elements of Set Theory. Academic Press (cit. on pp. 2, 14). Hrbacek, Karel and Jech, Thomas [1978] (1999). Introduction to Set Theory. Third Edition, Revised and Expanded. Marcel Dekker (cit. on pp. 20, 21).