CM0832 Elements of Set Theory Axioms and Operations

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 20XX-X

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Hrbacek and Jech (1978) 1999].

Extensionality Axiom

Extensionality axiom

If two sets have exactly the same members, then they are equal, that is,

$$
\forall A \forall B[\forall x(x \in A \leftrightarrow x \in B) \rightarrow A=B] .
$$

Extensionality Axiom

Extensionality axiom

If two sets have exactly the same members, then they are equal, that is,

$$
\forall A \forall B[\forall x(x \in A \leftrightarrow x \in B) \rightarrow A=B]
$$

Question
Have we any set? No, we haven't.

Some Axioms for Building Sets

Empty (existence) axiom

There is a set having no members, that is,

$$
\exists B \forall x(x \notin B) .
$$

Some Axioms for Building Sets

Empty (existence) axiom
There is a set having no members, that is,

$$
\exists B \forall x(x \notin B) .
$$

Pairing axiom
For any sets u and v, there is a set having as members just u and v, that is,

$$
\forall a \forall b \exists C \forall x(x \in C \leftrightarrow x=a \vee x=b)
$$

Some Axioms for Building Sets

Union axiom (first version)
For any sets a and b, there is a set whose members are those sets belonging either to a or to b (or both), that is,

$$
\forall a \forall b \exists B \forall x(x \in B \leftrightarrow x \in a \vee x \in b)
$$

Power set axiom
For any set a, there is a set whose members are exactly the subsets of a, that is,

$$
\forall a \exists B \forall x(x \in B \leftrightarrow x \subseteq a),
$$

where

$$
u \subseteq v:=\forall t(t \in u \rightarrow t \in v)
$$

Some Axioms for Building Sets

Set abstraction operator
We added to the logical language of set theory the set abstraction operator $\{x \mid \varphi(x)\}$, where x is a variable and $\varphi(x)$ is a propositional function.

Some Axioms for Building Sets

Set abstraction operator
We added to the logical language of set theory the set abstraction operator $\{x \mid \varphi(x)\}$, where x is a variable and $\varphi(x)$ is a propositional function.

Observation
We added the set abstraction operator for naming sets, but this operator can be eliminated (see, e.g. [Drake 1974, § 2.6] and [Potter 1990, § 1.1]).

Some Axioms for Building Sets

Definitions from the empty, pairing, union and power set axioms via set abstraction Let a, b, u and v be sets, then we define

$$
\begin{aligned}
\emptyset & :=\{x \mid x \neq x\} & & \text { (empty set), } \\
\{u, v\} & :=\{x \mid x=u \vee x=v\} & & \text { (pair set), } \\
\{u\} & :=\{u, u\} & & \text { (singleton set), } \\
a \cup b & :=\{x \mid x \in a \vee x \in b\} & & \text { (union), } \\
\mathcal{P}(a) & :=\{x \mid x \subseteq a\} & & \text { (power set). }
\end{aligned}
$$

Some Axioms for Building Sets

Observation

Recall that our set of non-logical symbols is $\mathfrak{L}=\{\epsilon\}$. When we add some definitions, we formally are changing this set (e.g. $\mathfrak{L}=\{\epsilon, \emptyset, \cup\}$). See, e.g. [Kunen (2011) 2013, § I.2], [Kunen (1980) 1992, § I. 8 and § I.13] and [Suppes (1960) 1972, § 2.1] for how to add valid definitions and how to handle the new sets of non-logical symbols created by these definitions.

Subset Axiom Scheme

Introduction

Whiteboard.

Subset Axiom Scheme

Introduction
Whiteboard.
Subset axiom scheme (axiom scheme of comprehension/separation)
For any propositional function $\varphi(x)$, not containing B, the following is an axiom:

$$
\forall c \exists B \forall x(x \in B \leftrightarrow x \in c \wedge \varphi(x)) .
$$

Subset Axiom Scheme

Introduction
Whiteboard.
Subset axiom scheme (axiom scheme of comprehension/separation)
For any propositional function $\varphi(x)$, not containing B, the following is an axiom:

$$
\forall c \exists B \forall x(x \in B \leftrightarrow x \in c \wedge \varphi(x)) .
$$

Observation
We stated an axiom scheme.

Subset Axiom Scheme

Introduction
Whiteboard.
Subset axiom scheme (axiom scheme of comprehension/separation)
For any propositional function $\varphi(x)$, not containing B, the following is an axiom:

$$
\forall c \exists B \forall x(x \in B \leftrightarrow x \in c \wedge \varphi(x)) .
$$

Observation
We stated an axiom scheme.
Abstraction from the subset axiom scheme
$\{x \in c \mid \varphi(x)\}$ is the set of all $x \in c$ satisfying the property φ.

Subset Axiom Scheme

Observation

The propositional function φ can depend on other variables t_{1}, \ldots, t_{k}. In this case, we use $\varphi\left(x, t_{1}, \ldots, t_{k}\right)$ and we universally quantify on variables t_{1}, \ldots, t_{k} when using the axiom scheme.

Subset Axiom Scheme

Observation

The propositional function φ can depend on other variables t_{1}, \ldots, t_{k}. In this case, we use $\varphi\left(x, t_{1}, \ldots, t_{k}\right)$ and we universally quantify on variables t_{1}, \ldots, t_{k} when using the axiom scheme.

Theorem (Enderton [1977, Theorem 2A])

There is no set to which every set belongs.
Proof
Whiteboard.

Subset Axiom Scheme

Observation

The propositional function φ can depend on other variables t_{1}, \ldots, t_{k}. In this case, we use $\varphi\left(x, t_{1}, \ldots, t_{k}\right)$ and we universally quantify on variables t_{1}, \ldots, t_{k} when using the axiom scheme.

Theorem (Enderton [1977, Theorem 2A])

There is no set to which every set belongs.

Proof

Whiteboard.

Exercise

Why does the subset axiom scheme avoid the Berry paradox?

Arbitrary Unions and Intersections

Union axiom (final version)
For any set A, there exists a set B whose elements are exactly the members of the members of A, that is,

$$
\forall A \exists B \forall x[x \in B \leftrightarrow \exists b(x \in b \wedge b \in A)] .
$$

Arbitrary Unions and Intersections

Definition
Let A be a set. The union $\cup A$ of A is defined by

$$
\bigcup A:=\{x \mid \exists b(x \in b \wedge b \in A)\} .
$$

Example (informal)
Let $A=\{\{2,4,6\},\{6,16,26\},\{0\}\}$, then

$$
\bigcup A=\{0,2,4,6,16,26\} .
$$

Example

$$
\begin{aligned}
a \cup b & =\bigcup\{a, b\}, \\
\bigcup\{a\} & =a \\
\bigcup \emptyset & =\emptyset
\end{aligned}
$$

Arbitrary Unions and Intersections

Theorem (Enderton [1977, Theorem 2B])
For any non-empty set A, there exists a unique set B such that for any x,
$x \in B \quad$ iff $\quad x$ belongs to every member of A.

Arbitrary Unions and Intersections

Theorem (Enderton [1977, Theorem 2B])
For any non-empty set A, there exists a unique set B such that for any x,

$$
x \in B \quad \text { iff } \quad x \text { belongs to every member of } A \text {. }
$$

Definition
Let A be a non-empty set. The intersecction $\cap A$ of A can be defined by

$$
\bigcap A:=\{x \mid \forall b(b \in A \rightarrow x \in b)\}, \text { for } A \neq \emptyset .
$$

Algebra of Sets

Exercise (Enderton [1977, Exercise 2.18])
Assume that A and B are subsets of S. List all of the different sets that can be made from these three by use of the binary operations \cup, \cap, and - .

Algebra of Sets

Exercise (Enderton [1977, Exercise 2.18])
Assume that A and B are subsets of S. List all of the different sets that can be made from these three by use of the binary operations \cup, \cap, and - .

The Venn diagram shows four possible regions for shading, that is, we have 2^{4} different sets given by
$\emptyset, A, B, S, A \cup B, A \cap B, A-B, B-A, A+B, S-A, S-B, S-(A \cup B), S-(A \cap B)$, $S-(A-B), S-(B-A)$ and $S-(A+B)$,
where the binary operation + is the symmetric difference defined by

$$
\begin{aligned}
A+B & :=(A-B) \cup(B-A) \\
& =(A \cup B)-(A \cap B) .
\end{aligned}
$$

References

Drake, Frank R. (1974). Set Theory. An Introduction to Large Cardinals. Vol. 76. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company (cit. on pp. 8, 9).
Enderton, Herbert B. (1977). Elements of Set Theory. Academic Press (cit. on pp. 16-18, 21-24). Hrbacek, Karel and Jech, Thomas [1978] (1999). Introduction to Set Theory. Third Edition, Revised and Expanded. Marcel Dekker (cit. on p. 2).
Kunen, Kenneth [1980] (1992). Set Theory. An Introduction to Independence Proofs. 5th impression. North-Holland (cit. on p. 11).

- [2011] (2013). Set Theory. Revised edition. Vol. 34. Mathematical Logic and Foundations. College Publications (cit. on p. 11).
Potter, Michael D. (1990). Sets. An Introduction. Clarendon Press (cit. on pp. 8, 9). Suppes, Patrick [1960] (1972). Axiomatic Set Theory. Corrected republication. Dover Publications (cit. on p. 11).

