CM0081 Automata and Formal Languages Undecidable Problems

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

Introduction

Undecidable Problems

There are undecidable problems in different domains:

Analysis

Among other

Alonzo Church (1903 – 1995)[†]

 $^{^\}dagger Figures$ sources: History of computers, Wikipedia and MacTutor History of Mathematics. Normal Forms for the Lambda Calculus

Some remarks about the $\lambda\text{-calculus}$

- A formal system invented by Church around 1930s.
- The goal was to use the λ -calculus in the foundation of mathematics.
- Intended for studying functions and recursion.
- Computability model.
- A free-type functional programming language.
- \triangleright λ -notation (e.g. anonymous functions and currying).

Application

Application of the function M to argument N is denoted by MN (juxtaposition).

Application

Application of the function M to argument N is denoted by MN (juxtaposition).

Abstraction

'If M is any formula containing the variable x, then $\lambda x[M]$ is a symbol for the function whose values are those given by the formula.' [Church 1932, p. 352]

Currying

'Adopting a device due to Schönfinkel, we treat a function of two variables as a function of one variable whose values are functions of one variable, and a function of three or more variables similarly.' [Church 1932, p. 352]

Such device is called **currying** after Haskell Curry.

(continued on next slide)

Currying (continuation)

Let $g: X \times Y \to Z$ be a function of two variables. We can define two functions f_x and f:

 $\begin{array}{ccc} f_x:Y\to Z & f:X\to (Y\to Z)\\ f_x=\lambda y.g(x,y), & f=\lambda x.f_x.\\ \text{Then }(f\,x)\,y=f_x\,y=g(x,y). \text{ That is, the function of two variables} \end{array}$

 $g: X \times Y \to Z$

is represented as the higher-order function

 $f:X\to (Y\to Z).$

Let V be a denumerable set of variables. The set of λ -terms, denoted by Λ , is inductively defined by

$$\begin{split} x \in V \Rightarrow x \in \Lambda \\ M, N \in \Lambda \Rightarrow (MN) \in \Lambda \\ M \in \Lambda, x \in V \Rightarrow (\lambda x.M) \in \Lambda \end{split}$$

(variable) (application) (λ -abstraction)

Let V be a denumerable set of variables. The set of λ -terms, denoted by Λ , is inductively defined by

$$\begin{split} x \in V \Rightarrow x \in \Lambda \\ M, N \in \Lambda \Rightarrow (MN) \in \Lambda \\ M \in \Lambda, x \in V \Rightarrow (\lambda x.M) \in \Lambda \end{split}$$

(variable) (application) (λ -abstraction)

Observation

Usually, the set of λ -terms is defined by an abstract grammar like

 $t ::= x \mid t \, t \mid \lambda x.t$

Conventions

- \triangleright λ -term variables will be denoted by x, y, z, \dots .
- \blacktriangleright λ -terms will be denoted by M, N, \dots .

Conventions

- \triangleright λ -term variables will be denoted by x, y, z, \dots .
- \blacktriangleright λ -terms will be denoted by M, N, \dots .

Example

Whiteboard.

Conventions and syntactic sugar

- Outermost parentheses are not written.
- Application has higher precedence, i.e.,

 $\lambda x.MN \coloneqq (\lambda x.(MN)).$

Application associates to the left, i.e.,

$$MN_1N_2\dots N_n\coloneqq ((MN_1)N_2)\dots N_n).$$

Abstraction associates to the right, i.e.,

$$\begin{split} \lambda x_1 x_2 \dots x_n. & M \coloneqq \lambda x_1. \lambda x_2 \dots \lambda x_n. M \\ & \coloneqq (\lambda x_1. (\lambda x_2. (\dots (\lambda x_n. M) \dots))) \end{split}$$

Normal Forms for the Lambda Calculus

A variable x occurs free in M if x is not in the scope of λx . Otherwise, x occurs **bound**.

Definition

The set of free variables in \mathbf{M} , denoted by FV(M), is inductively defined by

$$\begin{split} \mathrm{FV}(x) &\coloneqq \{x\},\\ \mathrm{FV}(MN) &\coloneqq \mathrm{FV}(M) \cup \mathrm{FV}(N),\\ \mathrm{FV}(\lambda x.M) &\coloneqq \mathrm{FV}(M) - \{x\}. \end{split}$$

A variable x occurs free in M if x is not in the scope of λx . Otherwise, x occurs **bound**.

Definition

The set of free variables in \mathbf{M} , denoted by FV(M), is inductively defined by

$$\begin{split} & \operatorname{FV}(x) \coloneqq \{x\}, \\ & \operatorname{FV}(MN) \coloneqq \operatorname{FV}(M) \cup \operatorname{FV}(N), \\ & \operatorname{FV}(\lambda x.M) \coloneqq \operatorname{FV}(M) - \{x\}. \end{split}$$

Notation

The symbol ' \equiv ' denotes the syntactic identity.

The result of substituting N for every free occurrence of x in M, and changing bound variables to avoid clashes, denoted by M[x/N], is defined by [Hindley and Seldin 2008, Definition 1.12]

$$\begin{split} x[x/N] &\coloneqq N, \\ y[x/N] &\coloneqq y, \text{ if } y \not\equiv x, \\ (PQ)[x/N] &\coloneqq (P[x/N] Q[x/N]), \\ (\lambda x.P)[x/N] &\coloneqq \lambda x.P, \\ (\lambda y.P)[x/N] &\coloneqq \lambda y.P, \text{ if } y \not\equiv x \text{ and } x \notin FV(P), \\ (\lambda y.P)[x/N] &\coloneqq \lambda y.P[x/N], \text{ if } y \not\equiv x, x \in FV(P) \text{ and } y \notin FV(N), \\ (\lambda y.P)[x/N] &\coloneqq \lambda z.P[x/N][y/z], \text{ if } y \not\equiv x, x \in FV(P) \text{ and } y \in FV(N), \end{split}$$

where in the last equation, the variable z is chosen such that $z \notin FV(NP)$.

Normal Forms for the Lambda Calculus

The functional behaviour of the λ -calculus is formalised through of their reduction/conversion rules. The β -reduction rule is defined by

 $(\lambda x.M)N \to_\beta M[\,x/N\,].$

The functional behaviour of the λ -calculus is formalised through of their reduction/conversion rules. The β -reduction rule is defined by

 $(\lambda x.M)N \to_\beta M[\,x/N\,].$

Examples

The functional behaviour of the λ -calculus is formalised through of their reduction/conversion rules. The β -reduction rule is defined by

 $(\lambda x.M)N \to_\beta M[\,x/N\,].$

Examples

$$\blacktriangleright \ (\lambda y.yy)x \to_\beta xx$$

 $\blacktriangleright \ (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda y.yv)z \rightarrow_{\beta} zv$

The functional behaviour of the λ -calculus is formalised through of their reduction/conversion rules. The β -reduction rule is defined by

 $(\lambda x.M)N \to_\beta M[\,x/N\,].$

Examples

- $\blacktriangleright (\lambda y.yy)x \to_\beta xx$
- $\blacktriangleright \ (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda y.yv)z \rightarrow_{\beta} zv$
- $\blacktriangleright \ \ {\rm Let} \ \Omega \ {\rm be} \ (\lambda x.xx)(\lambda x.xx), \ {\rm then} \ \Omega \to_\beta \Omega \to_\beta \cdots$

A β -redex is a λ -term of the form $(\lambda x.M)N$.

Definition

A λ -term which contains no β -redex is in β -normal form (β -nf).

Definition

A λ -term N is a β -nf of M (or M has the β -nf M) iff N is a β -nf and $M =_{\beta} N$, where $=_{\beta}$ is the equivalence relation generated by the reflexive and transitive closure of \rightarrow_{β} .

Example

Whiteboard.

Theorem

The set

 $NF := \{ M \in \Lambda \mid M \text{ has normal form } \}$

is not recursive (i.e. it is undecidable) [Church 1935, 1936].

Observation This was the first undecidable set ever.

Observation

For proving that the set NF is undecidable we need an encoding and a version of Rice's theorem for λ -calculus.

Observation

For proving that the set NF is undecidable we need an encoding and a version of Rice's theorem for λ -calculus.

Gödel numbering

The Gödel numbering for the λ -terms is defined by

$$\begin{split} &\#:\Lambda\to\mathbb{N}\\ &\#(x_i)=2^i,\\ &\#(\lambda x_i.M)=3^i5^{\#(M)},\\ &\#(MN)=7^{\#(M)}11^{\#(N)}. \end{split}$$

Theorem (Rice's theorem for the λ -calculus)

Let $A \subset \Lambda$ such as A is non-trivial (i.e. $A \neq \emptyset$ and $A \neq \Lambda$). Suppose that A is closed under $=_{\beta}$ (i.e. $M \in A$ and $M =_{\beta} N$ then $N \in A$). Then the set A is undecidable, that is,

 $\{ \#(M) \mid M \in A \}$ is undecidable.

See [Barendregt 1990].

Theorem (Rice's theorem for the λ -calculus)

Let $A \subset \Lambda$ such as A is non-trivial (i.e. $A \neq \emptyset$ and $A \neq \Lambda$). Suppose that A is closed under $=_{\beta}$ (i.e. $M \in A$ and $M =_{\beta} N$ then $N \in A$). Then the set A is undecidable, that is,

 $\{\,\#(M)\mid M\in A\,\}\quad\text{is undecidable}.$

```
See [Barendregt 1990].
```

```
Proof (undecidability of NF)
```

Since the set NF is not trivial and it is closed under $=_{\beta}$, the set is undecidable.

The *Entscheidungsproblem* (decision problem) can be stated in three equivalent ways [Davis 2013, p. 49]:

- (i) Find an algorithm to determine whether a given sentence of first order logic is valid, that is, true regardless of what specific objects and relationships are being reasoned about.
- (ii) Find an algorithm to determine whether a given sentence of first order logic is satisfiable, that is, true for some specific objects and relationships.
- (iii) Find an algorithm to determine given some sentences of first order logic regarded as premises and another sentence, being a desired conclusion, whether that conclusion is provable from the premises using the rules of proof for first order logic.

The Entscheidungsproblem

Historical remark

The *Entscheidungsproblem* was posed by Hilbert and Ackermann in 1928 [Hilbert and Ackermann 1950].

The Entscheidungsproblem

Historical remark

The *Entscheidungsproblem* was posed by Hilbert and Ackermann in 1928 [Hilbert and Ackermann 1950].

Negative answer

Church [1935, 1936] and Turing [1936–1937] gave a negative answer to the *Entscheidungsproblem* from the undecidability of the normal forms for the λ -calculus and the halting problem for Turing machines, respectively.

An instance of the PCP

An instance of PCP consist of two lists of equal length

$$A=w_1,\ldots,w_k$$
 and $B=x_1,\ldots,x_k$

of strings over an alphabet Σ .

(continued on next slide)

An instance of the PCP (continuation)

We say that the previous instance of PCP has a solution, if there is a sequence of one or more integers

 $i_1,\ldots,i_m, \text{ with } m \geq 1$

that, when interpreted as indexes for strings in the A and B lists, yield the same string, i.e.

$$w_{i_1}\cdots w_{i_m} = x_{i_1}\cdots x_{i_m}.$$

The sequence

 i_1, \dots, i_m

is called a solution of the instance of PCP.

The problem

Given an instance of PCP, tell whether this instance has a solution.

The problem

Given an instance of PCP, tell whether this instance has a solution.

Example 9.13

An instance of the PCP:

	List A	List B
i	w_i	x_i
1	1	111
2	10111	10
3	10	0

Solution: 2, 1, 1, 3, m = 4.

Undecidability proof

The PCP problem is undecidable [Post 1946]. Hopcroft, Motwani and Ullman [2007] shows the undecidability via a reduction of L_u to PCP.

Let S be a finite set of $n \times n$ matrices with integer entries. To determine whether the zero matrix belongs to the semigroup generated by S, i.e. to determine whether the matrices in S can be multiplied in some order, possibly with repetitions, to yield the zero matrix.

Let S be a finite set of $n \times n$ matrices with integer entries. To determine whether the zero matrix belongs to the semigroup generated by S, i.e. to determine whether the matrices in S can be multiplied in some order, possibly with repetitions, to yield the zero matrix.

Some undecidable instances

The MMP is undecidable for a set of seven 3×3 matrices, or a set of two 21×21 matrices [Halava, Harju and Hirvensalo 2007].

Let S be a finite set of $n \times n$ matrices with integer entries. To determine whether the zero matrix belongs to the semigroup generated by S, i.e. to determine whether the matrices in S can be multiplied in some order, possibly with repetitions, to yield the zero matrix.

Some undecidable instances

The MMP is undecidable for a set of seven 3×3 matrices, or a set of two 21×21 matrices [Halava, Harju and Hirvensalo 2007].

Undecidability proof Reduction of PCP to MMP.

Hilbert's Tenth Problem

Definition

A Diophantine equation is an equation of the form

 $D(x_1,\ldots,x_k)=0,$

where D is a polynomial with integer coefficients.

Hilbert's Tenth Problem

Definition

A Diophantine equation is an equation of the form

 $D(x_1,\ldots,x_k)=0,$

where D is a polynomial with integer coefficients.

The problem (in present terminology)

'Given a Diophantine equation with any number of unknowns: To devise a process according to which it can be determined by a finite number of operations whether the equation has non-negative integer solutions.' [Sicard, Ospina and Vélez 2006, p. 12542]

Hilbert's Tenth Problem

Definition

A Diophantine equation is an equation of the form

 $D(x_1,\ldots,x_k)=0,$

where D is a polynomial with integer coefficients.

The problem (in present terminology)

'Given a Diophantine equation with any number of unknowns: To devise a process according to which it can be determined by a finite number of operations whether the equation has non-negative integer solutions.' [Sicard, Ospina and Vélez 2006, p. 12542]

Undecidability proof

A set is recursively enumerable if and only if it is Diophantine [Matiyasevich 1993].

Some undecidable problems

'Physics is also full of non-computable problems. The undecidability of the presence of chaos in classical Hamiltonian systems has been established ³³. The problem whether a boolean combination of subspaces (including negations) is reachable by a quantum automation was proved to be undecidable 34 . The question whether a quantum system is gapless also cannot be decided by an algorithm 35-37. Whether a many-body model is frustration-free is undecidable as well³⁸. Smith (Sec. 6 of ³⁹) identified a striking physical consequence of the Hilbert's tenth problem that ground state energies and half-life times of excited states are, strictly speaking, non-computable for many-body systems. A variety of seemingly simple problems in quantum information theory has been shown not to be decidable ⁴⁰. The question whether a sequence of outcomes of some sequential measurement cannot be observed is undecidable in quantum mechanics, whereas it is decidable in classical physics ⁴¹. In this case, the algorithmic undecidability turned out to be the signature of quantumness.' [Bondar and Pechen 2020, p. 2]

References

- Barendregt, H. (1990). Functional Programming and Lambda Calculus. In: Handbook of Theoretical Computer Science. Ed. by van Leeuwen, J. Vol. B. Formal Models and Semantics. MIT Press. Chap. 7. DOI: 10.1016/B978-0-444-88074-1.50012-3 (cit. on pp. 25, 26).
- Bondar, D. I. and Pechen, A. N. (2020). Uncomputability and Complexity of Quantum Control. Scientific Reports 10, p. 1195. DOI: 10.1038/s41598-019-56804-1 (cit. on p. 41).
- Church, A. (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics 33.2, pp. 346–366. DOI: 10.2307/1968337 (cit. on pp. 5–7).
 - (1935). An Unsolvable Problem of Elementary Number Theory. Preliminar Report (Abstract).
 Bulletin of the American Mathematical Society 41.5, pp. 332–333. DOI: 10.1090/S0002-9904-1935-06102-6 (cit. on pp. 22, 28, 29).
 - (1936). An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics 58.2, pp. 345–363. DOI: 10.2307/2371045 (cit. on pp. 22, 28, 29).
 - Davis, M. (2013). Three Proofs of the Unsolvability of the Entscheidungsproblem. In: Alan Turing. His Work and Impact. Ed. by Cooper, S. B. and van Leeuwen, J. Elsevier, pp. 49–52 (cit. on p. 27).

References

- Halava, V., Harju, T. and Hirvensalo, M. (2007). Undecidability Bounds for Integer Matrices Using Claus Instances. International Journal of Foundations of Computer Science 18.5, pp. 931–948. DOI: 10.1142/S0129054107005066 (cit. on pp. 35–37).
 - Hilbert, D. and Ackermann, W. [1938] (1950). Principles of Mathematical Logic. 2nd ed. Translation of the second edition of *Grundzüge der Theoretischen Logik*, Springer, 1938. Translated by Lewis M. Hammond, George G. Leckie and F. Steinhardt. Edited and with notes by Robert E. Luce. Chelsea Publising Company (cit. on pp. 28, 29).
 - Hindley, J. R. and Seldin, J. P. (2008). Lambda-Calculus and Combinators. An Introduction. Cambridge University Press (cit. on p. 16).

- Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 34).
- Matiyasevich, Y. V. (1993). Hilbert's Tenth Problem. MIT Press (cit. on pp. 38-40).
- Post, E. (1946). A Variant of a Recursively Unsolvable Problem. Bulletin of the American Mathematical Society 52, pp. 264–268. DOI: 10.1090/S0002-9904-1946-08555-9 (cit. on p. 34).

References

- Sicard, A., Ospina, J. and Vélez, M. (2006). Quantum Hypercomputation Based on the Dynamical Algebra *su*(1,1). J. Phys. A: Math. Gen. 39.40, pp. 12539–12558. DOI: 10.1088/0305-4470/39/ 40/018 (cit. on pp. 38–40).
- Turing, A. M. (1936–1937). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceeding of the London Mathematical Society s2-42, pp. 230–265. DOI: 10.1112/plms/ s2-42.1.230 (cit. on pp. 28, 29).