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Introduction
Undecidable Problems
There are undecidable problems in different domains:

▶ Analysis
▶ Logic
▶ Matrices
▶ Topology
▶ Physics
▶ Among other
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Normal Forms for the Lambda Calculus

Alonzo Church (1903 – 1995)†

†Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics.
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Normal Forms for the Lambda Calculus
Some remarks about the 𝜆-calculus

▶ A formal system invented by Church around 1930s.
▶ The goal was to use the 𝜆-calculus in the foundation of mathematics.
▶ Intended for studying functions and recursion.
▶ Computability model.
▶ A free-type functional programming language.
▶ 𝜆-notation (e.g. anonymous functions and currying).
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Normal Forms for the Lambda Calculus
Application
Application of the function 𝑀 to argument 𝑁 is denoted by 𝑀𝑁 (juxtaposition).

Abstraction
‘If 𝑀 is any formula containing the variable 𝑥, then 𝜆𝑥[𝑀] is a symbol for the function
whose values are those given by the formula.’ [Church 1932, p. 352]
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Normal Forms for the Lambda Calculus
Currying

‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function
of one variable whose values are functions of one variable, and a function of three or
more variables similarly.’ [Church 1932, p. 352]

Such device is called currying after Haskell Curry.

(continued on next slide)
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Normal Forms for the Lambda Calculus
Currying (continuation)
Let 𝑔 ∶ 𝑋 × 𝑌 → 𝑍 be a function of two variables. We can define two functions 𝑓𝑥 and 𝑓 :

𝑓𝑥 ∶ 𝑌 → 𝑍 𝑓 ∶ 𝑋 → (𝑌 → 𝑍)
𝑓𝑥 = 𝜆𝑦.𝑔(𝑥, 𝑦), 𝑓 = 𝜆𝑥.𝑓𝑥.

Then (𝑓 𝑥) 𝑦 = 𝑓𝑥 𝑦 = 𝑔(𝑥, 𝑦). That is, the function of two variables

𝑔 ∶ 𝑋 × 𝑌 → 𝑍
is represented as the higher-order function

𝑓 ∶ 𝑋 → (𝑌 → 𝑍).
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Normal Forms for the Lambda Calculus
Definition
Let 𝑉 be a denumerable set of variables. The set of 𝝀-terms, denoted by Λ, is inductively
defined by

𝑥 ∈ 𝑉 ⇒ 𝑥 ∈ Λ (variable)
𝑀, 𝑁 ∈ Λ ⇒ (𝑀𝑁) ∈ Λ (application)

𝑀 ∈ Λ, 𝑥 ∈ 𝑉 ⇒ (𝜆𝑥.𝑀) ∈ Λ (𝜆-abstraction)

Observation
Usually, the set of 𝜆-terms is defined by an abstract grammar like

𝑡 ∶∶= 𝑥 ∣ 𝑡 𝑡 ∣ 𝜆𝑥.𝑡
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Normal Forms for the Lambda Calculus
Conventions

▶ 𝜆-term variables will be denoted by 𝑥, 𝑦, 𝑧, … .
▶ 𝜆-terms will be denoted by 𝑀, 𝑁, … .

Example
Whiteboard.
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Normal Forms for the Lambda Calculus
Conventions and syntactic sugar

▶ Outermost parentheses are not written.
▶ Application has higher precedence, i.e.,

𝜆𝑥.𝑀𝑁 ≔ (𝜆𝑥.(𝑀𝑁)).
▶ Application associates to the left, i.e.,

𝑀𝑁1𝑁2 … 𝑁𝑛 ≔ (… ((𝑀𝑁1)𝑁2) … 𝑁𝑛).
▶ Abstraction associates to the right, i.e.,

𝜆𝑥1𝑥2 … 𝑥𝑛.𝑀 ≔ 𝜆𝑥1.𝜆𝑥2. … 𝜆𝑥𝑛.𝑀
≔ (𝜆𝑥1.(𝜆𝑥2.(… (𝜆𝑥𝑛.𝑀) … ))).
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Normal Forms for the Lambda Calculus
Definition
A variable 𝑥 occurs free in 𝑀 if 𝑥 is not in the scope of 𝜆𝑥. Otherwise, 𝑥 occurs bound.

Definition
The set of free variables in 𝐌, denoted by FV(𝑀), is inductively defined by

FV(𝑥) ≔ {𝑥},
FV(𝑀𝑁) ≔ FV(𝑀) ∪ FV(𝑁),

FV(𝜆𝑥.𝑀) ≔ FV(𝑀) − {𝑥}.

Notation
The symbol ‘≡’ denotes the syntactic identity.
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Normal Forms for the Lambda Calculus
Definition
The result of substituting 𝐍 for every free occurrence of 𝐱 in 𝐌, and changing bound
variables to avoid clashes, denoted by 𝑀[ 𝑥/𝑁 ], is defined by [Hindley and Seldin 2008, Defin-
ition 1.12]

𝑥[ 𝑥/𝑁 ] ≔ 𝑁,
𝑦[ 𝑥/𝑁 ] ≔ 𝑦, if 𝑦 ≢ 𝑥,

(𝑃𝑄)[ 𝑥/𝑁 ] ≔ (𝑃 [ 𝑥/𝑁 ] 𝑄[ 𝑥/𝑁 ]),
(𝜆𝑥.𝑃 )[ 𝑥/𝑁 ] ≔ 𝜆𝑥.𝑃 ,
(𝜆𝑦.𝑃 )[ 𝑥/𝑁 ] ≔ 𝜆𝑦.𝑃 , if 𝑦 ≢ 𝑥 and 𝑥 ∉ FV(𝑃 ),
(𝜆𝑦.𝑃 )[ 𝑥/𝑁 ] ≔ 𝜆𝑦.𝑃 [ 𝑥/𝑁 ], if 𝑦 ≢ 𝑥, 𝑥 ∈ FV(𝑃 ) and 𝑦 ∉ FV(𝑁),
(𝜆𝑦.𝑃 )[ 𝑥/𝑁 ] ≔ 𝜆𝑧.𝑃 [ 𝑥/𝑁 ][ 𝑦/𝑧 ], if 𝑦 ≢ 𝑥, 𝑥 ∈ FV(𝑃 ) and

𝑦 ∈ FV(𝑁),

where in the last equation, the variable 𝑧 is chosen such that 𝑧 ∉ FV(𝑁𝑃).
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Normal Forms for the Lambda Calculus
Definition
The functional behaviour of the 𝜆-calculus is formalised through of their reduction/conversion
rules. The 𝜷-reduction rule is defined by

(𝜆𝑥.𝑀)𝑁 →𝛽 𝑀[ 𝑥/𝑁 ].

Examples
▶ (𝜆𝑦.𝑦𝑦)𝑥 →𝛽 𝑥𝑥
▶ (𝜆𝑥.(𝜆𝑦.𝑦𝑥)𝑧)𝑣 →𝛽 (𝜆𝑦.𝑦𝑣)𝑧 →𝛽 𝑧𝑣
▶ Let Ω be (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥), then Ω →𝛽 Ω →𝛽 ⋯
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Normal Forms for the Lambda Calculus
Definition
A 𝜷-redex is a 𝜆-term of the form (𝜆𝑥.𝑀)𝑁 .

Definition
A 𝜆-term which contains no 𝛽-redex is in 𝜷-normal form (𝛽-nf).

Definition
A 𝜆-term 𝑁 is a 𝜷-nf of 𝑀 (or 𝑀 has the 𝜷-nf 𝑀) iff 𝑁 is a 𝛽-nf and 𝑀 =𝛽 𝑁 , where =𝛽
is the equivalence relation generated by the reflexive and transitive closure of →𝛽.

Example
Whiteboard.
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Normal Forms for the Lambda Calculus
Theorem
The set

NF ≔ { 𝑀 ∈ Λ ∣ 𝑀 has normal form }
is not recursive (i.e. undecidable) [Church 1935, 1936].

Observation
This was the first undecidable set ever.
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Normal Forms for the Lambda Calculus
Observation
For proving that the set NF is undecidable we need an encoding and a version of Rice’s theorem
for 𝜆-calculus.

Gödel numbering
The Gödel numbering for the 𝜆-terms is defined by

# ∶ Λ → ℕ
#(𝑥𝑖) = 2𝑖,

#(𝜆𝑥𝑖.𝑀) = 3𝑖5#(𝑀),
#(𝑀𝑁) = 7#(𝑀)11#(𝑁).
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Normal Forms for the Lambda Calculus
Theorem (Rice’s theorem for the 𝜆-calculus)
Let 𝐴 ⊂ Λ such as 𝐴 is non-trivial (i.e. 𝐴 ≠ ∅ and 𝐴 ≠ Λ). Suppose that 𝐴 is closed under =𝛽
(i.e. 𝑀 ∈ 𝐴 and 𝑀 =𝛽 𝑁 then 𝑁 ∈ 𝐴). Then the set 𝐴 is undecidable, that is,

{ #(𝑀) ∣ 𝑀 ∈ 𝐴 } is undecidable.
See [Barendregt 1990].

Proof (undecidability of NF)
Since the set NF is not trivial and it is closed under =𝛽, the set is undecidable.
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The Entscheidungsproblem
The problem
The Entscheidungsproblem (decision problem) can be stated in three equivalent ways [Davis
2013, p. 49]:

(i) Find an algorithm to determine whether a given sentence of first order logic is
valid, that is, true regardless of what specific objects and relationships are being
reasoned about.

(ii) Find an algorithm to determine whether a given sentence of first order logic is
satisfiable, that is, true for some specific objects and relationships.

(iii) Find an algorithm to determine given some sentences of first order logic regarded
as premises and another sentence, being a desired conclusion, whether that con-
clusion is provable from the premises using the rules of proof for first order logic.
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The Entscheidungsproblem
Historical remark
The Entscheidungsproblem was posed by Hilbert and Ackermann in 1928 [Hilbert and Ackermann
1950].

Negative answer
Church [1935, 1936] and Turing [1936–1937] gave a negative answer to the Entscheidungsprob-
lem from the undecidability of the normal forms for the 𝜆-calculus and the halting problem for
Turing machines, respectively.
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Post’s Correspondence Problem (PCP)
An instance of the PCP
An instance of PCP consist of two lists of equal length

𝐴 = 𝑤1, … , 𝑤𝑘 and 𝐵 = 𝑥1, … , 𝑥𝑘
of strings over an alphabet Σ.

(continued on next slide)
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Post’s Correspondence Problem (PCP)
An instance of the PCP (continuation)
We say that the previous instance of PCP has a solution, if there is a sequence of one or more
integers

𝑖1, … , 𝑖𝑚, with 𝑚 ≥ 1
that, when interpreted as indexes for strings in the 𝐴 and 𝐵 lists, yield the same string, i.e.

𝑤𝑖1
⋯ 𝑤𝑖𝑚

= 𝑥𝑖1
⋯ 𝑥𝑖𝑚

.
The sequence

𝑖1, … , 𝑖𝑚
is called a solution of the instance of PCP.
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Post’s Correspondence Problem (PCP)
The problem
Given an instance of PCP, tell whether this instance has a solution.

Example 9.13
An instance of the PCP:

List A List B
𝑖 𝑤𝑖 𝑥𝑖
1 1 111
2 10111 10
3 10 0

Solution: 2, 1, 1, 3, 𝑚 = 4.
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Post’s Correspondence Problem (PCP)
Undecidability proof
The PCP problem is undecidable [Post 1946]. Hopcroft, Motwani and Ullman [2007] shows the
undecidability via a reduction of Lu to PCP.
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The Mortal Matrix Problem (MMP)
The problem
Let 𝑆 be a finite set of 𝑛 × 𝑛 matrices with integer entries. To determine whether the zero
matrix belongs to the semigroup generated by 𝑆, i.e. to determine whether the matrices in 𝑆
can be multiplied in some order, possibly with repetitions, to yield the zero matrix.

Some undecidable instances
The MMP is undecidable for a set of seven 3×3 matrices, or a set of two 21×21 matrices [Halava,
Harju and Hirvensalo 2007].

Undecidability proof
Reduction of PCP to MMP.

The Mortal Matrix Problem 35/44



The Mortal Matrix Problem (MMP)
The problem
Let 𝑆 be a finite set of 𝑛 × 𝑛 matrices with integer entries. To determine whether the zero
matrix belongs to the semigroup generated by 𝑆, i.e. to determine whether the matrices in 𝑆
can be multiplied in some order, possibly with repetitions, to yield the zero matrix.

Some undecidable instances
The MMP is undecidable for a set of seven 3×3 matrices, or a set of two 21×21 matrices [Halava,
Harju and Hirvensalo 2007].

Undecidability proof
Reduction of PCP to MMP.

The Mortal Matrix Problem 36/44



The Mortal Matrix Problem (MMP)
The problem
Let 𝑆 be a finite set of 𝑛 × 𝑛 matrices with integer entries. To determine whether the zero
matrix belongs to the semigroup generated by 𝑆, i.e. to determine whether the matrices in 𝑆
can be multiplied in some order, possibly with repetitions, to yield the zero matrix.

Some undecidable instances
The MMP is undecidable for a set of seven 3×3 matrices, or a set of two 21×21 matrices [Halava,
Harju and Hirvensalo 2007].

Undecidability proof
Reduction of PCP to MMP.

The Mortal Matrix Problem 37/44



Hilbert’s Tenth Problem
Definition
A Diophantine equation is an equation of the form

𝐷(𝑥1, … , 𝑥𝑘) = 0,
where 𝐷 is a polynomial with integer coefficients.

The problem (in present terminology)
‘Given a Diophantine equation with any number of unknowns: To devise a process
according to which it can be determined by a finite number of operations whether the
equation has non-negative integer solutions.’ [Sicard, Ospina and Vélez 2006, p. 12542]

Undecidability proof
A set is recursively enumerable if and only if it is Diophantine [Matiyasevich 1993].
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Undecidable Problems in Physics
Some undecidable problems
‘Physics is also full of non-computable problems. The undecidability of the presence of chaos in classical
Hamiltonian systems has been established33. The problem whether a boolean combination of subspaces
(including negations) is reachable by a quantum automation was proved to be undecidable34. The question
whether a quantum system is gapless also cannot be decided by an algorithm35–37. Whether a many-
body model is frustration-free is undecidable as well38. Smith (Sec. 6 of39) identified a striking physical
consequence of the Hilbert’s tenth problem that ground state energies and half-life times of excited states
are, strictly speaking, non-computable for many-body systems. A variety of seemingly simple problems
in quantum information theory has been shown not to be decidable40. The question whether a sequence
of outcomes of some sequential measurement cannot be observed is undecidable in quantum mechanics,
whereas it is decidable in classical physics41. In this case, the algorithmic undecidability turned out to be
the signature of quantumness.’ [Bondar and Pechen 2020, p. 2]
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