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Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫 𝐴.
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Introduction

Alan Mathison Turing
(1912 – 1954)
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Introduction

▶ Unbounded tape divided into discrete
squares which contain symbols from a fi-
nite alphabet.

▶ Read/Write head.

▶ Finite set of instructions (transition func-
tion).

▶ Move of a Turing machine:
From the current state and the tape symbol
under the head: change state, rewrite the
symbol and move the head one square.
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Turing Machines
Definition
A Turing machine is a 7-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐵, 𝐹) where

𝑄: A finite set of states
Σ: An alphabet of input symbols
Γ: An alphabet of tape symbols (Σ ⊆ Γ)

𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × 𝐷: A transition (partial) function
(𝐷 = {𝐿, 𝑅} set of movements)

𝑞0 ∈ 𝑄: A start state
𝐵: The blank symbol (𝐵 ∈ Γ, 𝐵 ∉ Σ)

𝐹 ⊆ 𝑄: A set of final or accepting states
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Transition Diagrams for Turing Machines
Example
Let Σ = {0, 1} and Γ = {0, 1, 𝑋, 𝑌 , 𝐵}.

𝑞0

start

𝑞1 𝑞2

𝑞3 𝑞4

0/𝑋 →

𝑌 /𝑌 →

𝑌 /𝑌 →
0/0 →

1/𝑌 ←

𝑌 /𝑌 ←
0/0 ←

𝑋/𝑋 →

𝑌 /𝑌 →
𝐵/𝐵 →
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Transition Tables for Turing Machines
Example
The machine of the previous example is given by

𝑀 = ({𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4}, {0, 1}, {0, 1, 𝑋, 𝑌 , 𝐵}, 𝛿, 𝑞0, 𝐵, {𝑞4}),
where 𝛿 is given by

state 0 1 𝑋 𝑌 𝐵
𝑞0 (𝑞1, 𝑋, 𝑅) − − (𝑞3, 𝑌 , 𝑅) −
𝑞1 (𝑞1, 0, 𝑅) (𝑞2, 𝑌 , 𝐿) − (𝑞1, 𝑌 , 𝑅) −
𝑞2 (𝑞2, 0, 𝐿) − (𝑞0, 𝑋, 𝑅) (𝑞2, 𝑌 , 𝐿) −
𝑞3 − − − (𝑞3, 𝑌 , 𝑅) (𝑞4, 𝐵, 𝑅)
𝑞4 − − − − −
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Quintuples for Turing Machines
Example
The machine of the previous example is given by

𝑀 = ({𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4}, {0, 1}, {0, 1, 𝑋, 𝑌 , 𝐵}, 𝛿, 𝑞0, 𝐵, {𝑞4}),
where 𝛿 is given by

𝑞0, 0, 𝑋, 𝑅, 𝑞1
𝑞0, 𝑌 , 𝑌 , 𝑅, 𝑞3

𝑞1, 0, 0, 𝑅, 𝑞1
𝑞1, 1, 𝑌 , 𝐿, 𝑞2
𝑞1, 𝑌 , 𝑌 , 𝑅, 𝑞1

𝑞2, 0, 0, 𝐿, 𝑞2
𝑞2, 𝑋, 𝑋, 𝑅, 𝑞0
𝑞2, 𝑌 , 𝑌 , 𝐿, 𝑞2

𝑞3, 𝑌 , 𝑌 , 𝑅, 𝑞3
𝑞3, 𝐵, 𝐵, 𝑅, 𝑞4
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Instantaneous Descriptions for Turing Machines
Definition
An instantaneous description of a Turing machine is a string

𝑋1𝑋2 ⋯ 𝑋𝑖−1𝑞𝑋𝑖𝑋𝑖+1 ⋯ 𝑋𝑛,
where
(i) 𝑞 is the state of the Turing machine,
(ii) the head is scanning the 𝑖-th symbol from the left and
(iii) 𝑋1𝑋2 ⋯ 𝑋𝑛 is the portion of the tape between the leftmost and rightmost non-blank.
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Instantaneous Descriptions for Turing Machines
Notation
Move of the Turing machine 𝑀 from an instantaneous description to another is denoted by ⊢

𝑀
.

Zero o more moves of the Turing machine 𝑀 are denoted by
∗
⊢
𝑀

.
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Instantaneous Descriptions for Turing Machines
Example
For the machine of the previous example we have

0 0 1

𝑞0

𝑋 0 1

𝑞1

𝑋 0 1

𝑞1

𝑞0001 ⊢
𝑀

𝑋𝑞101
𝑞0001 ⊢

𝑀
𝑋𝑞101 ⊢

𝑀
𝑋0𝑞11

𝑞0001
∗
⊢
𝑀

𝑋0𝑞11

Turing Machines 11/45



Recursively Enumerable Languages
Definition
Let 𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐵, 𝐹) be a Turing machine. The language accepted by 𝑀 is defined by

L(𝑀) ≔ { 𝑤 ∈ Σ∗ ∣ 𝑞0𝑤
∗
⊢
𝑀

𝛼𝑝𝛽 },

where 𝑝 ∈ 𝐹 and 𝛼, 𝛽 ∈ Γ∗.

Languages Accepted by Turing Machines 12/45



Recursively Enumerable Languages
Definition
A language 𝐿 is recursively enumerable iff exists a Turing machine 𝑀 such that 𝐿 = L(𝑀).

Example
Let 𝑀 be the machine described by the previous diagram. Then

L(𝑀) = { 0𝑛1𝑛 ∣ 𝑛 ≥ 1 }.

See the simulation in the course website.
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Recursive Languages
Convention
We assume that a Turing machine halts if it accepts.

What about if a Turing machine does not accept?
Recall
Recall that a language 𝐿 is recursively enumerable iff exists a Turing machine 𝑀 such that
𝐿 = L(𝑀).

Definition
A language 𝐿 is recursive iff exists a Turing machine 𝑀 such that
(i) 𝐿 = L(𝑀) and
(ii) 𝑀 always halt (even if it does not accept).
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Turing Machine Computable Functions
Definition
A number-theoretic function is a function whose signature is

ℕ𝑘 → ℕ, with 𝑘 ∈ ℕ.
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Turing Machine Computable Functions
Example
Number-theoretic functions.

z(𝑛) = 0 (zero function)
s(𝑛) = 𝑛 + 1 (successor function)

U𝑙
𝑘(𝑛1, … , 𝑛𝑙) = 𝑛𝑘 (projection functions)

id(𝑛) = 𝑛 (identity function)
C𝑙

𝑘(𝑛1, … , 𝑛𝑙) = 𝑘 (constant functions)
𝑚 + 𝑛 (addition function)
𝑚 · 𝑛 (multiplication function)

𝑚𝑛 (exponentiation function)
𝑛! (factorial function)
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Turing Machine Computable Functions
Example
Number-theoretic functions.

pred(𝑛) = {0, if 𝑛 = 0;
𝑛 − 1, otherwise; (predecessor function)

𝑚 ∸ 𝑛 = {𝑚 − 𝑛, if 𝑚 ≥ 𝑛;
0, otherwise; (truncated subtraction function)

|𝑚 − 𝑛| = {𝑚 ∸ 𝑛, if 𝑚 ≥ 𝑛;
𝑛 ∸ 𝑚, otherwise; (absolute difference function)
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Turing Machine Computable Functions
Example
Number-theoretic functions.

sg(𝑛) = {0, if 𝑛 = 0;
1, otherwise; (signum function)

sg(𝑛) = {1, if 𝑛 = 0;
0, otherwise. (inverse signum function)
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Turing Machine Computable Functions
Codification of 𝑘-tuples of natural numbers

⃗⃗⃗�⃗� ≔ 0𝑛 = 0 ⋯ 0⏟
𝑛 times

, for 𝑛 ∈ ℕ;

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗(𝑛1, 𝑛2, … , 𝑛𝑘) ≔ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑛1 1 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑛2 1 ⋯ 1 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑛𝑘, for (𝑛1, 𝑛2, … , 𝑛𝑘) ∈ ℕ𝑘.
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Turing Machine Computable Functions
Definition
A unary function 𝑓 ∶ ℕ → ℕ is Turing machine computable iff exists a machine
𝑀 = (𝑄, {0, 1}, Γ, 𝛿, 𝑞0, 𝐵) (there are not accepting states), such that for all 𝑛 ∈ ℕ, from
the initial instantaneous description 𝑞0 ⃗⃗⃗�⃗� the machine halts with ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓(𝑛) on its tape, surrounded
by blanks.

Observation
The definition can be extended to functions 𝑓 ∶ ℕ𝑘 → ℕ.
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Turing Machine Computable Functions
Example
The truncated subtraction function is Turing machine computable.

𝑚 ∸ 𝑛 = {𝑚 − 𝑛, if 𝑚 ≥ 𝑛;
0, otherwise.

Initial instantaneous description: 𝑞00𝑚10𝑛

Final information on the tape: 0𝑚∸𝑛

See the simulation in the course homepage.
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Turing Machine Computable Functions
Example
All the number-theoretic functions in the previous examples are Turing machine computable
functions.
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Equivalence between Function Computation and Language Recognition
Exercise 8.2.4

▶ Define the graph of a function 𝑓 ∶ ℕ → ℕ to be the set of all strings of the form
[ ⃗⃗⃗�⃗�, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓(𝑛) ].

▶ A Turing machine is said to compute the function 𝑓 ∶ ℕ → ℕ if, started with ⃗⃗⃗�⃗� on its
tape, it halts (in any state) with ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓(𝑛) on its tape.

(continued on next slide)
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Equivalence between Function Computation and Language Recognition
Exercise 8.2.4 (continuation)
Answer the following, with informal, but clear constructions.

1. Show how, given a Turing machine that computes 𝑓 , you can construct a Turing machine
that accepts the graph of 𝑓 as a language.

2. Show how, given a Turing machine that accepts the graph of 𝑓 , you can construct a Turing
machine that computes 𝑓 .

3. A function is said to partial if it may be undefined for some arguments. If we extend the
ideas of this exercise to partial functions, then we do not require that the Turing machine
computing 𝑓 halts if its input 𝑛 is one of the natural numbers for which 𝑓(𝑛) is not defined.
Do your constructions for parts (1) and (2) work if the function 𝑓 is partial? If not, explain
how you could modify the constructions to make it work.
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Restrictions to Turing Machines
Restrictions

▶ Turing machines with semi-unbounded tapes
▶ Multi-stack machines

Theorem
The previous restrictions are equivalents to Turing machines.
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Extensions to Turing Machines
Extensions

▶ Multi-tape Turing machines
▶ Mutil-dimensional tape Turing machines
▶ Multi-head Turing machines
▶ Non-deterministic Turing machines
▶ Subroutines
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