CM0081 Automata and Formal Languages § 8.2 Turing Machines

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2024-1

Preliminaries

Conventions
The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Hopcroft, Motwani and Ullman 2007].

- The natural numbers include the zero, that is, $\mathbb{N}=\{0,1,2, \ldots\}$.
\rightarrow The power set of a set A, that is, the set of its subsets, is denoted by $\mathcal{P} A$.

Introduction

Alan Mathison Turing (1912-1954)

Introduction

- Unbounded tape divided into discrete squares which contain symbols from a finite alphabet.
- Read/Write head.
- Finite set of instructions (transition function).
- Move of a Turing machine:

From the current state and the tape symbol
 under the head: change state, rewrite the symbol and move the head one square.

Turing Machines

Definition

A Turing machine is a 7 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$ where
Q : A finite set of states
Σ : An alphabet of input symbols
Γ : An alphabet of tape symbols $(\Sigma \subseteq \Gamma)$
$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times D:$ A transition (partial) function

$$
\text { (} D=\{L, R\} \text { set of movements) }
$$

$q_{0} \in Q:$ A start state
B : The blank symbol $(B \in \Gamma, B \notin \Sigma)$
$F \subseteq Q:$ A set of final or accepting states

Transition Diagrams for Turing Machines

Example
Let $\Sigma=\{0,1\}$ and $\Gamma=\{0,1, X, Y, B\}$.

Transition Tables for Turing Machines

Example

The machine of the previous example is given by

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{0,1\},\{0,1, X, Y, B\}, \delta, q_{0}, B,\left\{q_{4}\right\}\right),
$$

where δ is given by

state	0	1	X	Y	B
q_{0}	$\left(q_{1}, X, R\right)$	-	-	$\left(q_{3}, Y, R\right)$	-
q_{1}	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, Y, L\right)$	-	$\left(q_{1}, Y, R\right)$	-
q_{2}	$\left(q_{2}, 0, L\right)$	-	$\left(q_{0}, X, R\right)$	$\left(q_{2}, Y, L\right)$	-
q_{3}	-	-	-	$\left(q_{3}, Y, R\right)$	$\left(q_{4}, B, R\right)$
q_{4}	-	-	-	-	-

Quintuples for Turing Machines

Example

The machine of the previous example is given by

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{0,1\},\{0,1, X, Y, B\}, \delta, q_{0}, B,\left\{q_{4}\right\}\right)
$$

where δ is given by
$q_{0}, 0, X, R, q_{1}$
$q_{1}, 0,0, R, q_{1}$
$q_{2}, 0,0, L, q_{2}$
q_{3}, Y, Y, R, q_{3}
q_{0}, Y, Y, R, q_{3}
$q_{1}, 1, Y, L, q_{2}$
q_{2}, X, X, R, q_{0}
q_{3}, B, B, R, q_{4}

$$
q_{1}, Y, Y, R, q_{1}
$$

$$
q_{2}, Y, Y, L, q_{2}
$$

Instantaneous Descriptions for Turing Machines

Definition

An instantaneous description of a Turing machine is a string

$$
X_{1} X_{2} \cdots X_{i-1} q X_{i} X_{i+1} \cdots X_{n}
$$

where
(i) q is the state of the Turing machine,
(ii) the head is scanning the i-th symbol from the left and
(iii) $X_{1} X_{2} \cdots X_{n}$ is the portion of the tape between the leftmost and rightmost non-blank.

Instantaneous Descriptions for Turing Machines

Notation

Move of the Turing machine M from an instantaneous description to another is denoted by $\stackrel{\rightharpoonup}{ }$.

Zero o more moves of the Turing machine M are denoted by $\stackrel{*}{\stackrel{*}{*}}$.

Instantaneous Descriptions for Turing Machines

Example

For the machine of the previous example we have

$$
\begin{aligned}
& q_{0} 001 \underset{M}{\stackrel{ }{\leftarrow}} X q_{1} 01 \\
& q_{0} 001 \underset{M}{\stackrel{ }{\leftarrow}} X q_{1} 01 \underset{M}{\vdash} X 0 q_{1} 1 \\
& q_{0} 001 \stackrel{*}{\stackrel{*}{*}} X 0 q_{1} 1
\end{aligned}
$$

Recursively Enumerable Languages

Definition
Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$ be a Turing machine. The language accepted by M is defined by

$$
\mathrm{L}(M):=\left\{w \in \Sigma^{*} \mid q_{0} w \stackrel{*}{\stackrel{*}{M}} \alpha p \beta\right\},
$$

where $p \in F$ and $\alpha, \beta \in \Gamma^{*}$.

Recursively Enumerable Languages

Definition
A language L is recursively enumerable iff exists a Turing machine M such that $L=\mathrm{L}(M)$.

Recursively Enumerable Languages

Definition

A language L is recursively enumerable iff exists a Turing machine M such that $L=\mathrm{L}(M)$.

Example

Let M be the machine described by the previous diagram. Then

$$
\mathrm{L}(M)=\left\{0^{n} 1^{n} \mid n \geq 1\right\}
$$

See the simulation in the course website.

Recursive Languages

Convention
We assume that a Turing machine halts if it accepts.

Recursive Languages

Convention
We assume that a Turing machine halts if it accepts.
What about if a Turing machine does not accept?

Recursive Languages

Convention
We assume that a Turing machine halts if it accepts.
What about if a Turing machine does not accept?
Recall
Recall that a language L is recursively enumerable iff exists a Turing machine M such that $L=\mathrm{L}(M)$.

Recursive Languages

Convention
We assume that a Turing machine halts if it accepts.
What about if a Turing machine does not accept?
Recall
Recall that a language L is recursively enumerable iff exists a Turing machine M such that $L=\mathrm{L}(M)$.

Definition
A language L is recursive iff exists a Turing machine M such that
(i) $L=\mathrm{L}(M)$ and
(ii) M always halt (even if it does not accept).

Turing Machine Computable Functions

Definition
A number-theoretic function is a function whose signature is

$$
\mathbb{N}^{k} \rightarrow \mathbb{N} \text {, with } k \in \mathbb{N} \text {. }
$$

Turing Machine Computable Functions

Example
Number-theoretic functions.

$$
\begin{aligned}
\mathrm{z}(n) & =0 \\
\mathrm{~s}(n) & =n+1 \\
\mathrm{U}_{k}^{l}\left(n_{1}, \ldots, n_{l}\right) & =n_{k} \\
\mathrm{id}(n) & =n \\
\mathrm{C}_{k}^{l}\left(n_{1}, \ldots, n_{l}\right) & =k \\
m+n & \\
m \cdot n & \\
m^{n} & \\
n! &
\end{aligned}
$$

(zero function)
(successor function) (projection functions)
(identity function)
(constant functions)
(addition function)
(multiplication function)
(exponentiation function)
(factorial function)

Turing Machine Computable Functions

Example

Number-theoretic functions.

$$
\begin{aligned}
& \operatorname{pred}(n)= \begin{cases}0, & \text { if } n=0 \\
n-1, & \text { otherwise }\end{cases} \\
& m-n= \begin{cases}m-n, & \text { if } m \geq n \\
0, & \text { otherwise }\end{cases} \\
&|m-n|= \begin{cases}m \dot{ }-n, & \text { if } m \geq n \\
n \dot{-m,} & \text { otherwise }\end{cases}
\end{aligned}
$$

(predecessor function)
(truncated subtraction function)
(absolute difference function)

Turing Machine Computable Functions

Example

Number-theoretic functions.

$$
\begin{aligned}
& \operatorname{sg}(n)= \begin{cases}0, & \text { if } n=0 \\
1, & \text { otherwise } ;\end{cases} \\
& \overline{\operatorname{sg}(n)}= \begin{cases}1, & \text { if } n=0 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

(signum function)
(inverse signum function)

Turing Machine Computable Functions

Codification of k-tuples of natural numbers

$$
\begin{array}{cc}
\vec{n}:=0^{n}=\underbrace{0 \cdots 0}_{n \text { times }}, & \text { for } n \in \mathbb{N} ; \\
\overrightarrow{\left(n_{1}, n_{2}, \ldots, n_{k}\right)}:=\overrightarrow{n_{1}} 1 \overrightarrow{n_{2}} 1 \cdots 1 \overrightarrow{n_{k}}, & \text { for }\left(n_{1}, n_{2}, \ldots, n_{k}\right) \in \mathbb{N}^{k} .
\end{array}
$$

Turing Machine Computable Functions

Definition

A unary function $f: \mathbb{N} \rightarrow \mathbb{N}$ is Turing machine computable iff exists a machine $M=\left(Q,\{0,1\}, \Gamma, \delta, q_{0}, B\right)$ (there are not accepting states), such that for all $n \in \mathbb{N}$, from the initial instantaneous description $q_{0} \vec{n}$ the machine halts with $\overrightarrow{f(n)}$ on its tape, surrounded by blanks.

Turing Machine Computable Functions

Definition

A unary function $f: \mathbb{N} \rightarrow \mathbb{N}$ is Turing machine computable iff exists a machine $M=\left(Q,\{0,1\}, \Gamma, \delta, q_{0}, B\right)$ (there are not accepting states), such that for all $n \in \mathbb{N}$, from the initial instantaneous description $q_{0} \vec{n}$ the machine halts with $\overrightarrow{f(n)}$ on its tape, surrounded by blanks.

Observation
The definition can be extended to functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$.

Turing Machine Computable Functions

Example

The truncated subtraction function is Turing machine computable.

$$
m \doteq n= \begin{cases}m-n, & \text { if } m \geq n \\ 0, & \text { otherwise }\end{cases}
$$

Initial instantaneous description: $q_{0} 0^{m} 10^{n}$
Final information on the tape: 0^{m-n}
See the simulation in the course homepage.

Turing Machine Computable Functions

Example

All the number-theoretic functions in the previous examples are Turing machine computable functions.

Equivalence between Function Computation and Language Recognition

Exercise 8.2.4
\rightarrow Define the graph of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ to be the set of all strings of the form $[\vec{n}, \overrightarrow{f(n)}]$.

Equivalence between Function Computation and Language Recognition

Exercise 8.2.4
\rightarrow Define the graph of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ to be the set of all strings of the form $[\vec{n}, \overrightarrow{f(n)}]$.
\rightarrow A Turing machine is said to compute the function $f: \mathbb{N} \rightarrow \mathbb{N}$ if, started with \vec{n} on its tape, it halts (in any state) with $\overrightarrow{f(n)}$ on its tape.

Equivalence between Function Computation and Language Recognition

Exercise 8.2.4 (continuation)
Answer the following, with informal, but clear constructions.

Equivalence between Function Computation and Language Recognition

Exercise 8.2.4 (continuation)

Answer the following, with informal, but clear constructions.

1. Show how, given a Turing machine that computes f, you can construct a Turing machine that accepts the graph of f as a language.

Equivalence between Function Computation and Language Recognition

Exercise 8.2.4 (continuation)

Answer the following, with informal, but clear constructions.

1. Show how, given a Turing machine that computes f, you can construct a Turing machine that accepts the graph of f as a language.
2. Show how, given a Turing machine that accepts the graph of f, you can construct a Turing machine that computes f.

Equivalence between Function Computation and Language Recognition

Exercise 8.2.4 (continuation)

Answer the following, with informal, but clear constructions.

1. Show how, given a Turing machine that computes f, you can construct a Turing machine that accepts the graph of f as a language.
2. Show how, given a Turing machine that accepts the graph of f, you can construct a Turing machine that computes f.
3. A function is said to partial if it may be undefined for some arguments. If we extend the ideas of this exercise to partial functions, then we do not require that the Turing machine computing f halts if its input n is one of the natural numbers for which $f(n)$ is not defined.

Do your constructions for parts (1) and (2) work if the function f is partial? If not, explain how you could modify the constructions to make it work.

Restrictions to Turing Machines

Restrictions

Restrictions to Turing Machines

Restrictions

- Turing machines with semi-unbounded tapes

Restrictions to Turing Machines

Restrictions

Turing machines with semi-unbounded tapes

- Multi-stack machines

Restrictions to Turing Machines

Restrictions

Turing machines with semi-unbounded tapes

- Multi-stack machines

Theorem

The previous restrictions are equivalents to Turing machines.

Extensions to Turing Machines

Extensions

Extensions to Turing Machines

Extensions

- Multi-tape Turing machines

Extensions to Turing Machines

Extensions

- Multi-tape Turing machines
- Mutil-dimensional tape Turing machines

Extensions to Turing Machines

Extensions

- Multi-tape Turing machines
- Mutil-dimensional tape Turing machines
- Multi-head Turing machines

Extensions to Turing Machines

Extensions

- Multi-tape Turing machines
- Mutil-dimensional tape Turing machines
- Multi-head Turing machines
- Non-deterministic Turing machines

Extensions to Turing Machines

Extensions

- Multi-tape Turing machines
- Mutil-dimensional tape Turing machines
- Multi-head Turing machines
- Non-deterministic Turing machines
- Subroutines

Extensions to Turing Machines

Extensions

- Multi-tape Turing machines
- Mutil-dimensional tape Turing machines
- Multi-head Turing machines
- Non-deterministic Turing machines
- Subroutines

Theorem
The previous extensions are equivalents to Turing machines.

References

Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 2).

