CM0081 Automata and Formal Languages § 3.1 Regular Expressions

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2024-1

Preliminaries

Conventions
The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Hopcroft, Motwani and Ullman 2007].

- The natural numbers include the zero, that is, $\mathbb{N}=\{0,1,2, \ldots\}$.
\rightarrow The power set of a set A, that is, the set of its subsets, is denoted by $\mathcal{P} A$.

Introduction: Description of regular languages

$$
(01)(01)^{*}+(010)(010)^{*}
$$

Algebraic description
Machine-like description

Introduction: Regular Expressions

Features

- Algebraic description of regular languages

Introduction: Regular Expressions

Features

- Algebraic description of regular languages
- Declarative ('user-friendly') way to express the strings that belong to the language

Introduction: Regular Expressions

Features

- Algebraic description of regular languages
$>$ Declarative ('user-friendly') way to express the strings that belong to the language

Uses

- Search commands (e.g. Grep)

Introduction: Regular Expressions

Features

- Algebraic description of regular languages
$>$ Declarative ('user-friendly') way to express the strings that belong to the language

Uses
$>$ Search commands (e.g. GREP)

- Lexical-analyzer generators (e.g. Lex and Alex)

Introduction: Regular Expressions

Features

- Algebraic description of regular languages
$>$ Declarative ('user-friendly') way to express the strings that belong to the language

Uses
$>$ Search commands (e.g. GREP)

- Lexical-analyzer generators (e.g. Lex and Alex)
\rightarrow Domain specific languages (DSLs)

Operations on Languages

Notation
The power set of a set A is denoted $\mathcal{P} A$.

Operations on Languages

Definition
Let L, L_{1} and L_{2} be languages on an alphabet Σ.
(i) Union of languages:

$$
\begin{gathered}
\cup: \mathcal{P} \Sigma^{*} \times \mathcal{P} \Sigma^{*} \rightarrow \mathcal{P} \Sigma^{*} \\
L_{1} \cup L_{2}:=\left\{x \mid x \in L_{1} \text { or } x \in L_{2}\right\} .
\end{gathered}
$$

(iii) Powers of a language:

$$
\begin{aligned}
(-)^{(-)} & : \mathcal{P} \Sigma^{*} \times \mathbb{N} \rightarrow \mathcal{P} \Sigma^{*} \\
L^{0} & :=\{\varepsilon\}, \\
L^{n+1} & :=L \cdot L^{n} .
\end{aligned}
$$

(ii) Concatenation of languages:

$$
\begin{gathered}
:: \mathcal{P} \Sigma^{*} \times \mathcal{P} \Sigma^{*} \rightarrow \mathcal{P} \Sigma^{*} \\
L_{1} \cdot L_{2}:=\left\{x \cdot y \mid x \in L_{1} \text { and } y \in L_{2}\right\} .
\end{gathered}
$$

(iv) Kleene closure of a language:

$$
\begin{aligned}
(-)^{*} & : \mathcal{P} \Sigma^{*} \rightarrow \mathcal{P} \Sigma^{*} \\
L^{*} & :=\bigcup_{n \geq 0} L^{n} .
\end{aligned}
$$

Operations on Languages

Examples

- If $L=\{0,1\}$, then L^{*} consists of all strings of 0 's and 1 's and the empty word.

Operations on Languages

Examples

- If $L=\{0,1\}$, then L^{*} consists of all strings of 0 's and 1 's and the empty word.
- If $L=\left\{0^{n} \mid n \geq 1\right\}$, then $L^{*}=L \cup\{\varepsilon\}$.

Operations on Languages

Examples

If $L=\{0,1\}$, then L^{*} consists of all strings of 0 's and 1 's and the empty word.

- If $L=\left\{0^{n} \mid n \geq 1\right\}$, then $L^{*}=L \cup\{\varepsilon\}$.

If $L=\{0,11\}$, then L^{*} consists of the empty word and those strings of 0 's and 1 's such that the 1 's come in pairs.

Operations on Languages

Examples

- If $L=\{0,1\}$, then L^{*} consists of all strings of 0 's and 1 's and the empty word.
- If $L=\left\{0^{n} \mid n \geq 1\right\}$, then $L^{*}=L \cup\{\varepsilon\}$.
- If $L=\{0,11\}$, then L^{*} consists of the empty word and those strings of 0 's and 1 's such that the 1 's come in pairs.
- Powers on \emptyset

$$
\begin{aligned}
\emptyset^{0} & =\{\varepsilon\}, \\
\emptyset^{i} & =\emptyset, \quad \text { for } i \geq 1, \\
\emptyset^{*} & =\{\varepsilon\} .
\end{aligned}
$$

What the Regular Expressions Are

Definition
Let Σ be an alphabet. The regular expressions (regex's) on Σ are inductively defined by:

What the Regular Expressions Are

Definition
Let Σ be an alphabet. The regular expressions (regex's) on Σ are inductively defined by:

- Basis step
(i) ε is a regex,
(ii) \emptyset is regex and
(iii) If $a \in \Sigma$ then a is a regex.

What the Regular Expressions Are

Definition

Let Σ be an alphabet. The regular expressions (regex's) on Σ are inductively defined by:

- Basis step
(i) ε is a regex,
(ii) \emptyset is regex and
(iii) If $a \in \Sigma$ then a is a regex.
- Inductive step

If E and F are regex's then
(i) $E+F$ is a regex,
(ii) $E \cdot F$ is a regex,
(iii) E^{*} is a regex and
(iv) (E) is a regex.

Precedence of Operators

Order of precedence and associative
Precedence from highest to lowest: (), *, • and + .
Associative: The operators • and + are left-associative.

Precedence of Operators

Order of precedence and associative
Precedence from highest to lowest: (), *, • and + .
Associative: The operators • and + are left-associative.

Example

$$
\begin{aligned}
01^{*}+\mathbf{1} & =\left(0\left(\mathbf{1}^{*}\right)\right)+\mathbf{1} \\
& \neq(\mathbf{0 1})^{*}+\mathbf{1} \\
& \neq \mathbf{0}\left(\mathbf{1}^{*}+\mathbf{1}\right)
\end{aligned}
$$

Languages Denoted by Regular Expressions

Definition

Let E be a regular expression. The language denoted by E, denoted by $\mathrm{L}(E)$, is inductively defined by:

Languages Denoted by Regular Expressions

Definition

Let E be a regular expression. The language denoted by E, denoted by $\mathrm{L}(E)$, is inductively defined by:

- Basis step

$$
\begin{aligned}
\mathrm{L}(\varepsilon) & :=\{\varepsilon\}, \\
\mathrm{L}(\emptyset) & :=\emptyset, \\
\mathrm{L}(\boldsymbol{a}) & :=\{a\} .
\end{aligned}
$$

Languages Denoted by Regular Expressions

Definition

Let E be a regular expression. The language denoted by E, denoted by $\mathrm{L}(E)$, is inductively defined by:

- Basis step

$$
\begin{aligned}
\mathrm{L}(\varepsilon) & :=\{\varepsilon\}, \\
\mathrm{L}(\emptyset) & :=\emptyset, \\
\mathrm{L}(\boldsymbol{a}) & :=\{a\} .
\end{aligned}
$$

- Inductive step

Let $\mathrm{L}(E)$ and $\mathrm{L}(F)$ be the languages denoted by the regular expressions E and F, then

$$
\begin{aligned}
\mathrm{L}(E+F) & :=\mathrm{L}(E) \cup \mathrm{L}(F), \\
\mathrm{L}(E \cdot F) & :=\mathrm{L}(E) \cdot \mathrm{L}(F), \\
\mathrm{L}\left(E^{*}\right) & :=(\mathrm{L}(E))^{*}, \\
\mathrm{~L}((E)) & :=\mathrm{L}(E) .
\end{aligned}
$$

Languages Denoted by Regular Expressions

Example

$$
\begin{array}{ll}
E & \mathrm{~L}(E) \\
\hline \boldsymbol{a}+\boldsymbol{b} & \mathrm{L}(\boldsymbol{a}) \cup \mathrm{L}(\boldsymbol{b})=\{a\} \cup\{b\}=\{a, b\}
\end{array}
$$

Languages Denoted by Regular Expressions

Example

E	$\mathrm{~L}(E)$
$\boldsymbol{a}+\boldsymbol{b}$	$\mathrm{L}(\boldsymbol{a}) \cup \mathrm{L}(\boldsymbol{b})=\{a\} \cup\{b\}=\{a, b\}$
\boldsymbol{a}^{*}	$\{\varepsilon, a, a a, a a a, \ldots\}$

Languages Denoted by Regular Expressions

Example

E	$\mathrm{~L}(E)$
$\boldsymbol{a}+\boldsymbol{b}$	$\mathrm{L}(\boldsymbol{a}) \cup \mathrm{L}(\boldsymbol{b})=\{a\} \cup\{b\}=\{a, b\}$
\boldsymbol{a}^{*}	$\{\varepsilon, a, a a, a a a, \ldots\}$
$(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}+\boldsymbol{b})$	$\mathrm{L}(\boldsymbol{a}+\boldsymbol{b}) \cdot \mathrm{L}(\boldsymbol{a}+\boldsymbol{b})=\{a, b\} \cdot\{a, b\}=\{a a, a b, b a, b b\}$

Languages Denoted by Regular Expressions

Example

\boldsymbol{E}	$\mathrm{L}(E)$
$\boldsymbol{a}+\boldsymbol{b}$	$\mathrm{L}(\boldsymbol{a}) \cup \mathrm{L}(\boldsymbol{b})=\{a\} \cup\{b\}=\{a, b\}$
\boldsymbol{a}^{*}	$\{\varepsilon, a, a a, a a a, \ldots\}$
$(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}+\boldsymbol{b})$	$\mathrm{L}(\boldsymbol{a}+\boldsymbol{b}) \cdot \mathrm{L}(\boldsymbol{a}+\boldsymbol{b})=\{a, b\} \cdot\{a, b\}=\{a a, a b, b a, b b\}$
$\boldsymbol{a}+(\boldsymbol{a} \boldsymbol{b})^{*}$	$\{a, \varepsilon, a b, a b a b, a b a b a b, \ldots\}$

Languages Denoted by Regular Expressions

Example

E	$\mathrm{~L}(E)$
$\boldsymbol{a}+\boldsymbol{b}$	$\mathrm{L}(\boldsymbol{a}) \cup \mathrm{L}(\boldsymbol{b})=\{a\} \cup\{b\}=\{a, b\}$
\boldsymbol{a}^{*}	$\{\varepsilon, a, a a, a a a, \ldots\}$
$(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}+\boldsymbol{b})$	$\mathrm{L}(\boldsymbol{a}+\boldsymbol{b}) \cdot \mathrm{L}(\boldsymbol{a}+\boldsymbol{b})=\{a, b\} \cdot\{a, b\}=\{a a, a b, b a, b b\}$
$\boldsymbol{a}+(\boldsymbol{a b})^{*}$	$\{a, \varepsilon, a b, a b a b, a b a b a b, \ldots\}$
$(\mathbf{0}+\mathbf{1})^{*} \mathbf{0 1}(\mathbf{0}+\mathbf{1})^{*}$	$\left\{x 01 y \mid x, y \in\{0,1\}^{*}\right\}$

Languages Denoted by Regular Expressions

Example

E	$\mathrm{~L}(E)$
$\boldsymbol{a}+\boldsymbol{b}$	$\mathrm{L}(\boldsymbol{a}) \cup \mathrm{L}(\boldsymbol{b})=\{a\} \cup\{b\}=\{a, b\}$
\boldsymbol{a}^{*}	$\{\varepsilon, a, a a, a a a, \ldots\}$
$(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}+\boldsymbol{b})$	$\mathrm{L}(\boldsymbol{a}+\boldsymbol{b}) \cdot \mathrm{L}(\boldsymbol{a}+\boldsymbol{b})=\{a, b\} \cdot\{a, b\}=\{a a, a b, b a, b b\}$
$\boldsymbol{a}+(\boldsymbol{a b})^{*}$	$\{a, \varepsilon, a b, a b a b, a b a b a b, \ldots\}$
$(\mathbf{0}+\mathbf{1})^{*} \mathbf{0 1}(\mathbf{0}+\mathbf{1})^{*}$	$\left\{x 01 y \mid x, y \in\{0,1\}^{*}\right\}$
$\boldsymbol{a}_{\boldsymbol{i}}\left(\boldsymbol{a}_{1}+\boldsymbol{a}_{2}+\cdots+\boldsymbol{a}_{\boldsymbol{n}}\right)^{*}$	$\left\{w \in \Sigma^{*} \mid w\right.$ starts by $\left.a_{i}\right\}$

Languages Denoted by Regular Expressions

Example

Write a regular expression for the language L defined by

$$
L=\left\{w \in\{0,1\}^{*} \mid 0 \text { and } 1 \text { alternate in } w\right\} .
$$

Languages Denoted by Regular Expressions

Example

Write a regular expression for the language L defined by

$$
L=\left\{w \in\{0,1\}^{*} \mid 0 \text { and } 1 \text { alternate in } w\right\} .
$$

Solution.

$$
(01)^{*}+(\mathbf{1 0})^{*}+\mathbf{0}(\mathbf{1 0})^{*}+\mathbf{1}(01)^{*}
$$

Languages Denoted by Regular Expressions

Example

Write a regular expression for the language L defined by

$$
L=\left\{w \in\{0,1\}^{*} \mid 0 \text { and } 1 \text { alternate in } w\right\} .
$$

Solution.

$$
(01)^{*}+(\mathbf{1 0})^{*}+\mathbf{0}(\mathbf{1 0})^{*}+\mathbf{1}(01)^{*}
$$

Other solution.

$$
(\varepsilon+\mathbf{1})(01)^{*}(\varepsilon+\mathbf{0})
$$

Languages Denoted by Regular Expressions

Example

The regular expression

$$
(\mathbf{1 0}+\mathbf{0})^{*}(\varepsilon+\mathbf{1})
$$

denotes the set of strings of 0's and 1's that have no two adjacent 1's.

Languages Denoted by Regular Expressions

Example

Write a regular expression for denoting the set of strings over $\Sigma=\{0,1\}$ not ending in 01 .

Languages Denoted by Regular Expressions

Example

Write a regular expression for denoting the set of strings over $\Sigma=\{0,1\}$ not ending in 01 . Solution.

$$
\varepsilon+\mathbf{0}+\mathbf{1}+(\mathbf{0}+\mathbf{1})^{*}(\mathbf{0 0}+\mathbf{1 0}+\mathbf{1 1})
$$

Derivatives of Regular Expressions

Observation
The material on derivatives of regular expressions is from [Brzozowski 1964].

Derivatives of Regular Expressions

Observation
The material on derivatives of regular expressions is from [Brzozowski 1964].
Definition
Let $L \subseteq \Sigma^{*}$ be a language and $a \in \Sigma$ a symbol. We define the derivative of L by a, denoted by $\partial_{a} L$, by

$$
\begin{gathered}
\partial_{a}: \mathcal{P} \Sigma^{*} \rightarrow \mathcal{P} \Sigma^{*} \\
\partial_{a} L=\left\{x \in \Sigma^{*} \mid a x \in L\right\}
\end{gathered}
$$

Derivatives of Regular Expressions

Observation
The material on derivatives of regular expressions is from [Brzozowski 1964].
Definition
Let $L \subseteq \Sigma^{*}$ be a language and $a \in \Sigma$ a symbol. We define the derivative of L by a, denoted by $\partial_{a} L$, by

$$
\begin{gathered}
\partial_{a}: \mathcal{P} \Sigma^{*} \rightarrow \mathcal{P} \Sigma^{*} \\
\partial_{a} L=\left\{x \in \Sigma^{*} \mid a x \in L\right\} .
\end{gathered}
$$

Example

$$
\begin{aligned}
\partial_{a}\{a b a b, a b b a\} & =\{b a b, b b a\}, \\
\partial_{a} \mathrm{~L}\left(\boldsymbol{a} \boldsymbol{b}^{*}\right) & =\mathrm{L}\left(\boldsymbol{b}^{*}\right) \\
\partial_{b} \mathrm{~L}\left(\boldsymbol{a} \boldsymbol{b}^{*}\right) & =\emptyset
\end{aligned}
$$

Derivatives of Regular Expressions

Definition

Let E be a regular expression on Σ and let $a \in \Sigma$ be a symbol. We define recursively the derivative of E by a, denoted $\partial_{a} E$, by

$$
\begin{array}{rlrl}
& \partial_{a}: \operatorname{RegEx} \rightarrow \text { RegEx } \\
\partial_{a} \emptyset & =\emptyset, & \partial_{a}(E+F) & =\partial_{a} E+\partial_{a} F, \\
\partial_{a} \varepsilon & =\emptyset, & \partial_{a}(E F) & = \begin{cases}\left(\partial_{a} E\right) F+\partial_{a} F, & \text { if } \varepsilon \in \mathrm{L}(E), \\
\partial_{a} \boldsymbol{a} & =\varepsilon,\end{cases} \\
\partial_{a} \boldsymbol{b}=\emptyset, & \text { for } a \neq b, & \text { otherwise, },
\end{array},
$$

Derivatives of Regular Expressions

Definition

Let E be a regular expression on Σ and let $w \in \Sigma^{*}$ be a string. We define recursively the derivative of E by w, denoted $\partial_{w} E$, by

$$
\begin{aligned}
\partial_{w} & : \operatorname{Reg} E x \rightarrow \operatorname{Reg} E x \\
\partial_{\varepsilon} E & =E \\
\partial_{a x} E & =\partial_{a}\left(\partial_{x} E\right)
\end{aligned}
$$

Derivatives of Regular Expressions

Theorem (Brzozowski [1964], Theorem 4.2)
Let E be a regular expression on Σ and let $w \in \Sigma^{*}$ be a string. Then

$$
w \in \mathrm{~L}(E) \quad \Leftrightarrow \quad \varepsilon \in \mathrm{L}\left(\partial_{w} E\right) \text {. }
$$

Libraries

Observation
Theoretical regular expressions \neq practical regular expressions.

Libraries

Observation
Theoretical regular expressions \neq practical regular expressions.
Some programming languages with support to regular expressions
.net, C, Haskell, Java, Mathematica, MATLAB and Perl.

Algorithms

Algorithms

See the HASKELL implementation of some algorithms on regular expressions in the course homepage.

Applications

Some programs that use regular expressions
Grep: Print lines matching a pattern
Awk: Pattern scanning and processing language
SED: Stream editor for filtering and transforming text
Alex, Flex and Lex: Lexical-analyser generators
Emacs and Vim: Test editors
MySQL and Oracle: Databases

Applications

Reading
§ 3.3. Applications of Regular Expressions.

Applications

Reading

§ 3.3. Applications of Regular Expressions.
In the above section are defined:

$$
\begin{array}{ll}
E^{+}:=E E^{*} & \text { (one or many times operator) } \\
E ?:=\varepsilon+E & \text { (zero or one time operator) }
\end{array}
$$

An Implementation: A Regular Expression Matcher

'Rob's implementation itself is a superb example of beautiful code: compact, elegant, efficient, and useful. It's one of the best examples of recursion that I have ever seen.'

Brian Kernighan, p. 3.

References

围 Brzozowski, J. A. (1964). Derivates of Regular Expressions. Journal of the ACM 11.4, pp. 481-494. DOI: 10.1145/321239. 321249 (cit. on pp. 35-37, 40).
Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 2).

