
CM0081 Automata and Formal Languages
§ 8.1 Problems That Computers Cannot Solve

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

1/37



Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫 𝐴.

Preliminaries 2/37



Undecidable Problems
Recall
Given 𝐿 ⊆ Σ∗ and a word 𝑤 ∈ Σ∗, to recall that to decide whether or not 𝑤 ∈ 𝐿 is a (decision)
problem on 𝐿.

Definition (informally)
A problem is undecidable iff no algorithm can solve it.

Question
Are there undecidable problems?

Undecidable Problems 3/37



Undecidable Problems
Recall
Given 𝐿 ⊆ Σ∗ and a word 𝑤 ∈ Σ∗, to recall that to decide whether or not 𝑤 ∈ 𝐿 is a (decision)
problem on 𝐿.

Definition (informally)
A problem is undecidable iff no algorithm can solve it.

Question
Are there undecidable problems?

Undecidable Problems 4/37



Undecidable Problems
Theorem
There are undecidable problems.

Proof (by cardinality)
Let Σ be an alphabet and let 𝑆 be the cardinality of the set 𝑆.
(i) Since Σ is an alphabet, then Σ = 𝑛, with 𝑛 ∈ ℤ+, that is, the alphabet Σ is an

enumerable set.
(ii) The set of all the strings over Σ, that is Σ∗, is an enumerable set (lexicographical order).
(iii) The set of all the languages over Σ, that is, the set { 𝐿 ∣ 𝐿 ⊆ Σ∗ } is infinite not

enumerable set.
(iv) The set { 𝑃 ∣ 𝑃 is a program in a general programming language } is an enumerable set

(lexicographical order).
Hence, there are more languages over Σ than programs. In consequence, there must be languages
whose decision problems are undecidable.

Undecidable Problems 5/37



The hello-world Problem: An Undecidable Problem

‘The first program to write is the same
for all languages: Print the words hello,
world.’ [1978, §1.1]

The hello-world Problem 6/37



The hello-world Problem: An Undecidable Problem
Problem description
To determine whether a given program, with a given input, prints hello, world as the first 12
characters that it prints.

Theorem
The hello-world problem is an undecidable problem.

The hello-world Problem 7/37



The hello-world Problem: An Undecidable Problem
Problem description
To determine whether a given program, with a given input, prints hello, world as the first 12
characters that it prints.

Theorem
The hello-world problem is an undecidable problem.

The hello-world Problem 8/37



The hello-world Problem: An Undecidable Problem
Informal proof

1. We assume that the following program 𝐻 exists:

hello-word tester

𝐻

𝑃 yes

𝐼 no

(continued on next slide)

The hello-world Problem 9/37



The hello-world Problem: An Undecidable Problem

2. From the program 𝐻 build the program 𝐻1 with the following behaviour:

𝐻1

𝑃 yes

𝐼 hello, world

(continued on next slide)

The hello-world Problem 10/37



The hello-world Problem: An Undecidable Problem

3. To build the program 𝐻2 by restricting 𝐻1 to take only the input 𝑃 (i.e. 𝑃 is also the
input of the program 𝑃 ):

𝐻2𝑃

yes

hello, world

(continued on next slide)

The hello-world Problem 11/37



The hello-world Problem: An Undecidable Problem

4. What does the program 𝐻2 do when given itself as input?

𝐻2𝐻2

yes

hello, world

Analysis on the whiteboard.

Therefore the program 𝐻2 can not exist.
5. Therefore the program 𝐻 can not exists, i.e. the hello-world problem is undecidable.

The hello-world Problem 12/37



The hello-world Problem: An Undecidable Problem

4. What does the program 𝐻2 do when given itself as input?

𝐻2𝐻2

yes

hello, world

Analysis on the whiteboard.
Therefore the program 𝐻2 can not exist.

5. Therefore the program 𝐻 can not exists, i.e. the hello-world problem is undecidable.

The hello-world Problem 13/37



Computability: Historical Remarks

1900 David Hilbert’s problems
Wir müssen wissen — wir werden wissen!
(We must know — we will know!)

1931 Kurt Gödel’s incompleteness theorems

1934-1937 Confluence of ideas
▶ Derivability from a system of equations (Kurt Gödel, Jacques Herbrand)
▶ Lambda calculus (Alonzo Church, Stephen C. Kleene, J. Barkley Rosser)
▶ Recursive functions (Kurt Gödel, Stephen C. Kleene)
▶ Post machines (Emil L. Post)
▶ Turing machines (Alan M. Turing)

(continued on next slide)

Computability: Historical Remarks 14/37



Computability: Historical Remarks

1900 David Hilbert’s problems
Wir müssen wissen — wir werden wissen!
(We must know — we will know!)

1931 Kurt Gödel’s incompleteness theorems

1934-1937 Confluence of ideas
▶ Derivability from a system of equations (Kurt Gödel, Jacques Herbrand)
▶ Lambda calculus (Alonzo Church, Stephen C. Kleene, J. Barkley Rosser)
▶ Recursive functions (Kurt Gödel, Stephen C. Kleene)
▶ Post machines (Emil L. Post)
▶ Turing machines (Alan M. Turing)

(continued on next slide)

Computability: Historical Remarks 15/37



Computability: Historical Remarks

1900 David Hilbert’s problems
Wir müssen wissen — wir werden wissen!
(We must know — we will know!)

1931 Kurt Gödel’s incompleteness theorems

1934-1937 Confluence of ideas
▶ Derivability from a system of equations (Kurt Gödel, Jacques Herbrand)
▶ Lambda calculus (Alonzo Church, Stephen C. Kleene, J. Barkley Rosser)
▶ Recursive functions (Kurt Gödel, Stephen C. Kleene)
▶ Post machines (Emil L. Post)
▶ Turing machines (Alan M. Turing)

(continued on next slide)

Computability: Historical Remarks 16/37



Computability: Historical Remarks

1936–40 The Church-Turing-Kleene thesis: A (number-theoretic) function is effectively
calculable if and only if there is a Turing machine which computes it.

1985 Deutsch’s quantum Turing machines

1940–today Many equivalents models of computation

Computability: Historical Remarks 17/37



Computability: Historical Remarks

1936–40 The Church-Turing-Kleene thesis: A (number-theoretic) function is effectively
calculable if and only if there is a Turing machine which computes it.

1985 Deutsch’s quantum Turing machines

1940–today Many equivalents models of computation

Computability: Historical Remarks 18/37



Computability: Historical Remarks

1936–40 The Church-Turing-Kleene thesis: A (number-theoretic) function is effectively
calculable if and only if there is a Turing machine which computes it.

1985 Deutsch’s quantum Turing machines

1940–today Many equivalents models of computation

Computability: Historical Remarks 19/37



Problems Reduction
How to prove that a problem is undecidable?

▶ Proof by contradiction (or constructively speaking, proof of negation [Bauer 2017])

▶ Problem reduction
Reduction from a problem 𝑃1 to a problem 𝑃2:

yes

no

yes

no

𝑃1 𝑃2

Problems Reduction 20/37



Problems Reduction
How to prove that a problem is undecidable?

▶ Proof by contradiction (or constructively speaking, proof of negation [Bauer 2017])
▶ Problem reduction

Reduction from a problem 𝑃1 to a problem 𝑃2:

yes

no

yes

no

𝑃1 𝑃2

Problems Reduction 21/37



Problems Reduction
Theorem
If 𝑃1 is undecidable and there is a reduction of 𝑃1 to 𝑃2, then 𝑃2 is undecidable too.

Proof by contradiction
Let’s suppose 𝑃2 decidable. The reduction from 𝑃1 to 𝑃2 implies that 𝑃1 is decidable which is
a contradiction. Therefore, 𝑃2 is undecidable.

reduction decide
𝑃1 instance 𝑃2 instance

no

yes

Problems Reduction 22/37



Problems Reduction
Theorem
If 𝑃1 is undecidable and there is a reduction of 𝑃1 to 𝑃2, then 𝑃2 is undecidable too.

Proof by contradiction
Let’s suppose 𝑃2 decidable. The reduction from 𝑃1 to 𝑃2 implies that 𝑃1 is decidable which is
a contradiction. Therefore, 𝑃2 is undecidable.

reduction decide
𝑃1 instance 𝑃2 instance

no

yes

Problems Reduction 23/37



Problems Reduction
Example (the calls-foo problem)
Problem description: Does a program 𝑄 with an input 𝑧 calls the function foo?

Prove that the calls-foo problem is undecidable.

(continued on next slide)

Problems Reduction 24/37



Problems Reduction
Example (the calls-foo problem)
Problem description: Does a program 𝑄 with an input 𝑧 calls the function foo?
Prove that the calls-foo problem is undecidable.

(continued on next slide)

Problems Reduction 25/37



Problems Reduction
Proof
Idea: Reduction of the hello-world problem to the calls-foo problem.

That is, a program 𝑃 with input 𝑦 prints hello, world iff a program 𝑄 with input z calls the
function foo.
Reduction:

1. Program 𝑃1: Rename foo in the program 𝑃 .
2. Program 𝑃2: Add the function foo to the program 𝑃1.
3. Program 𝑃3: Save the first 12 characters that prints the program 𝑃2.
4. Program 𝑃4: When the program 𝑃3 executes an output statement if output is hello,

world then calls the function foo.
5. 𝑄 = 𝑃4 and 𝑦 = 𝑧.

Problems Reduction 26/37



Problems Reduction
Proof
Idea: Reduction of the hello-world problem to the calls-foo problem.
That is, a program 𝑃 with input 𝑦 prints hello, world iff a program 𝑄 with input z calls the
function foo.

Reduction:
1. Program 𝑃1: Rename foo in the program 𝑃 .
2. Program 𝑃2: Add the function foo to the program 𝑃1.
3. Program 𝑃3: Save the first 12 characters that prints the program 𝑃2.
4. Program 𝑃4: When the program 𝑃3 executes an output statement if output is hello,

world then calls the function foo.
5. 𝑄 = 𝑃4 and 𝑦 = 𝑧.

Problems Reduction 27/37



Problems Reduction
Proof
Idea: Reduction of the hello-world problem to the calls-foo problem.
That is, a program 𝑃 with input 𝑦 prints hello, world iff a program 𝑄 with input z calls the
function foo.
Reduction:

1. Program 𝑃1: Rename foo in the program 𝑃 .
2. Program 𝑃2: Add the function foo to the program 𝑃1.
3. Program 𝑃3: Save the first 12 characters that prints the program 𝑃2.
4. Program 𝑃4: When the program 𝑃3 executes an output statement if output is hello,

world then calls the function foo.
5. 𝑄 = 𝑃4 and 𝑦 = 𝑧.

Problems Reduction 28/37



Problems Reduction
Exercise 8.1.1.a (the halting problem)
Problem description: Given a program and an input, does the program eventually halt; i.e. does
the program not loop forever on the input?

Prove that the halting problem is undecidable.

(continued on next slide)

Problems Reduction 29/37



Problems Reduction
Exercise 8.1.1.a (the halting problem)
Problem description: Given a program and an input, does the program eventually halt; i.e. does
the program not loop forever on the input?
Prove that the halting problem is undecidable.

(continued on next slide)

Problems Reduction 30/37



Problems Reduction
Proof (based on the solution in Hopcroft, Motwani and Ullman [2007])
Idea: Reduction of the hello-world problem to the halting problem.

That is, a program 𝑃 with input 𝑦 prints hello, world iff a program 𝑄 with input 𝑧 halts.
Reduction:

1. Program 𝑃1: Add an infinite loop (e.g. while(1);) to the end of main().
2. Program 𝑃2: Save the first 12 characters that prints the program 𝑃1.
3. Program 𝑃3: When the program 𝑃2 executes an output statement if output is hello,

world then the program 𝑃3 halts by going to the end of main.
4. 𝑄 = 𝑃3 and 𝑦 = 𝑧.

Problems Reduction 31/37



Problems Reduction
Proof (based on the solution in Hopcroft, Motwani and Ullman [2007])
Idea: Reduction of the hello-world problem to the halting problem.
That is, a program 𝑃 with input 𝑦 prints hello, world iff a program 𝑄 with input 𝑧 halts.

Reduction:
1. Program 𝑃1: Add an infinite loop (e.g. while(1);) to the end of main().
2. Program 𝑃2: Save the first 12 characters that prints the program 𝑃1.
3. Program 𝑃3: When the program 𝑃2 executes an output statement if output is hello,

world then the program 𝑃3 halts by going to the end of main.
4. 𝑄 = 𝑃3 and 𝑦 = 𝑧.

Problems Reduction 32/37



Problems Reduction
Proof (based on the solution in Hopcroft, Motwani and Ullman [2007])
Idea: Reduction of the hello-world problem to the halting problem.
That is, a program 𝑃 with input 𝑦 prints hello, world iff a program 𝑄 with input 𝑧 halts.
Reduction:

1. Program 𝑃1: Add an infinite loop (e.g. while(1);) to the end of main().
2. Program 𝑃2: Save the first 12 characters that prints the program 𝑃1.
3. Program 𝑃3: When the program 𝑃2 executes an output statement if output is hello,

world then the program 𝑃3 halts by going to the end of main.
4. 𝑄 = 𝑃3 and 𝑦 = 𝑧.

Problems Reduction 33/37



Problems Reduction
Theorem
If 𝑃1 is undecidable and there is a reduction of 𝑃1 to 𝑃2, then 𝑃2 is undecidable too.

Be careful
In the above theorem the reduction is from 𝑃1 to 𝑃2, it is not from 𝑃2 to 𝑃1:

▶ From a reduction of 𝑃1 to 𝑃2:

𝑃2 decidable ⇒ 𝑃1 decidable
𝑃1 undecidable ⇒ 𝑃2 undecidable

▶ From a reduction of 𝑃2 to 𝑃1:

𝑃1 decidable ⇒ 𝑃2 decidable (hypothesis false)
𝑃2 undecidable ⇒ 𝑃1 undecidable (hypothesis unknown)

Problems Reduction 34/37



Problems Reduction
Theorem
If 𝑃1 is undecidable and there is a reduction of 𝑃1 to 𝑃2, then 𝑃2 is undecidable too.

Be careful
In the above theorem the reduction is from 𝑃1 to 𝑃2, it is not from 𝑃2 to 𝑃1:

▶ From a reduction of 𝑃1 to 𝑃2:

𝑃2 decidable ⇒ 𝑃1 decidable
𝑃1 undecidable ⇒ 𝑃2 undecidable

▶ From a reduction of 𝑃2 to 𝑃1:

𝑃1 decidable ⇒ 𝑃2 decidable (hypothesis false)
𝑃2 undecidable ⇒ 𝑃1 undecidable (hypothesis unknown)

Problems Reduction 35/37



Problems Reduction
Theorem
If 𝑃1 is undecidable and there is a reduction of 𝑃1 to 𝑃2, then 𝑃2 is undecidable too.

Be careful
In the above theorem the reduction is from 𝑃1 to 𝑃2, it is not from 𝑃2 to 𝑃1:

▶ From a reduction of 𝑃1 to 𝑃2:

𝑃2 decidable ⇒ 𝑃1 decidable
𝑃1 undecidable ⇒ 𝑃2 undecidable

▶ From a reduction of 𝑃2 to 𝑃1:

𝑃1 decidable ⇒ 𝑃2 decidable (hypothesis false)
𝑃2 undecidable ⇒ 𝑃1 undecidable (hypothesis unknown)

Problems Reduction 36/37



References
Bauer, A. (2017). Five States of Accepting Constructive Mathematics. Bulletin of the
American Mathematical Society 54.3, pp. 481–498. doi: 10.1090/bull/1556 (cit. on
pp. 20, 21).
Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata
Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on pp. 2, 31–33).

References 37/37

https://doi.org/10.1090/bull/1556

	Preliminaries
	Undecidable Problems
	The hello-world Problem
	Computability: Historical Remarks
	Problems Reduction
	References

