CM0081 Automata and Formal Languages § 8.1 Problems That Computers Cannot Solve

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

Preliminaries

Conventions

- The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Hopcroft, Motwani and Ullman 2007].
- The natural numbers include the zero, that is, $\mathbb{N} = \{0, 1, 2, ...\}$.

The power set of a set A, that is, the set of its subsets, is denoted by $\mathcal{P}A$.

Undecidable Problems

Recall

Given $L \subseteq \Sigma^*$ and a word $w \in \Sigma^*$, to recall that to decide whether or not $w \in L$ is a (decision) problem on L.

Undecidable Problems

Recall

Given $L \subseteq \Sigma^*$ and a word $w \in \Sigma^*$, to recall that to decide whether or not $w \in L$ is a (decision) problem on L.

Definition (informally)

A problem is **undecidable** iff no algorithm can solve it.

Question

Are there undecidable problems?

There are undecidable problems.

- Proof (by cardinality)
- Let Σ be an alphabet and let $\overline{\overline{S}}$ be the cardinality of the set S.
- (i) Since Σ is an alphabet, then $\overline{\overline{\Sigma}} = n$, with $n \in \mathbb{Z}^+$, that is, the alphabet Σ is an enumerable set.
- (ii) The set of all the strings over Σ , that is Σ^* , is an enumerable set (lexicographical order).
- (iii) The set of all the languages over Σ , that is, the set $\{L \mid L \subseteq \Sigma^*\}$ is infinite not enumerable set.
- (iv) The set $\{P \mid P \text{ is a program in a general programming language} \}$ is an enumerable set (lexicographical order).
- Hence, there are more languages over Σ than programs. In consequence, there must be languages whose decision problems are undecidable.

THE C PROGRAMMING LANGUAGE
Brian W. Kernighan • Dennis M. Ritchie
PRENTICE HALL SOFTWARE SERIES

'The first program to write is the same for all languages: Print the words hello, world.' [1978, §1.1]

Problem description

To determine whether a given program, with a given input, prints hello, world as the first 12 characters that it prints.

Problem description

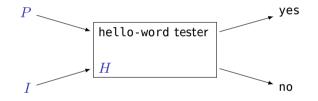
To determine whether a given program, with a given input, prints hello, world as the first 12 characters that it prints.

Theorem

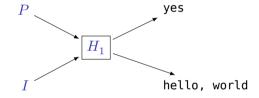
The hello-world problem is an undecidable problem.

Informal proof

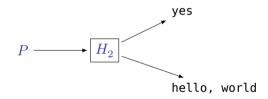
1. We assume that the following program H exists:



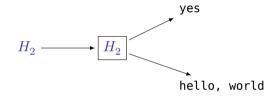
2. From the program H build the program H_1 with the following behaviour:



3. To build the program H_2 by restricting H_1 to take only the input P (i.e. P is also the input of the program P):

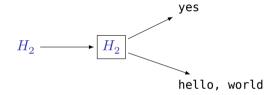


4. What does the program H_2 do when given itself as input?



Analysis on the whiteboard.

4. What does the program H_2 do when given itself as input?



Analysis on the whiteboard.

Therefore the program H_2 can not exist.

5. Therefore the program H can not exists, i.e. the hello-world problem is undecidable.

Computability: Historical Remarks

1900 David Hilbert's problems *Wir müssen wissen — wir werden wissen!* (We must know — we will know!) 1900 David Hilbert's problems *Wir müssen wissen — wir werden wissen!* (We must know — we will know!)

1931 Kurt Gödel's incompleteness theorems

1900 David Hilbert's problems *Wir müssen wissen — wir werden wissen!* (We must know — we will know!)

1931 Kurt Gödel's incompleteness theorems

1934-1937 Confluence of ideas

Derivability from a system of equations (Kurt Gödel, Jacques Herbrand)
Lambda calculus (Alonzo Church, Stephen C. Kleene, J. Barkley Rosser)

Recursive functions (Kurt Gödel, Stephen C. Kleene)

- Post machines (Emil L. Post)
- Turing machines (Alan M. Turing)

1936–40 The Church-Turing-Kleene thesis: A (number-theoretic) function is effectively calculable if and only if there is a Turing machine which computes it.

1936–40 The Church-Turing-Kleene thesis: A (number-theoretic) function is effectively calculable if and only if there is a Turing machine which computes it.

1985 Deutsch's quantum Turing machines

1936–40 The Church-Turing-Kleene thesis: A (number-theoretic) function is effectively calculable if and only if there is a Turing machine which computes it.

1985 Deutsch's quantum Turing machines

1940-today Many equivalents models of computation

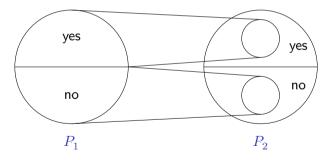
How to prove that a problem is undecidable?

▶ Proof by contradiction (or constructively speaking, proof of negation [Bauer 2017])

How to prove that a problem is undecidable?

- ▶ Proof by contradiction (or constructively speaking, proof of negation [Bauer 2017])
- Problem reduction

Reduction from a problem P_1 to a problem P_2 :

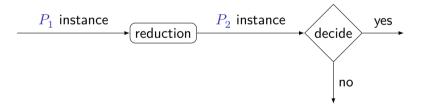


If P_1 is undecidable and there is a reduction of P_1 to P_2 , then P_2 is undecidable too.

If P_1 is undecidable and there is a reduction of P_1 to P_2 , then P_2 is undecidable too.

Proof by contradiction

Let's suppose P_2 decidable. The reduction from P_1 to P_2 implies that P_1 is decidable which is a contradiction. Therefore, P_2 is undecidable.



Example (the calls-foo problem)

Problem description: Does a program Q with an input z calls the function foo?

Example (the calls-foo problem)

Problem description: Does a program Q with an input z calls the function foo?

Prove that the calls-foo problem is undecidable.

Proof

Idea: Reduction of the hello-world problem to the calls-foo problem.

Proof

Idea: Reduction of the hello-world problem to the calls-foo problem.

That is, a program P with input y prints hello, world iff a program Q with input z calls the function foo.

Proof

Idea: Reduction of the hello-world problem to the calls-foo problem.

That is, a program P with input y prints hello, world iff a program Q with input z calls the function foo.

Reduction:

- 1. Program P_1 : Rename foo in the program P.
- 2. Program P_2 : Add the function foo to the program P_1 .
- 3. Program P_3 : Save the first 12 characters that prints the program P_2 .
- 4. Program P_4 : When the program P_3 executes an output statement if output is hello, world then calls the function foo.
- 5. $Q = P_4$ and y = z.

Exercise 8.1.1.a (the halting problem)

Problem description: Given a program and an input, does the program eventually halt; i.e. does the program not loop forever on the input?

Exercise 8.1.1.a (the halting problem)

Problem description: Given a program and an input, does the program eventually halt; i.e. does the program not loop forever on the input?

Prove that the halting problem is undecidable.

Proof (based on the solution in Hopcroft, Motwani and Ullman [2007]) Idea: Reduction of the hello-world problem to the halting problem.

Proof (based on the solution in Hopcroft, Motwani and Ullman [2007]) Idea: Reduction of the hello-world problem to the halting problem.

That is, a program P with input y prints hello, world iff a program Q with input z halts.

Proof (based on the solution in Hopcroft, Motwani and Ullman [2007]) Idea: Reduction of the hello-world problem to the halting problem.

That is, a program P with input y prints hello, world iff a program Q with input z halts. Reduction:

- 1. Program P_1 : Add an infinite loop (e.g. while(1);) to the end of main().
- 2. Program P_2 : Save the first 12 characters that prints the program P_1 .
- 3. Program P_3 : When the program P_2 executes an output statement if output is hello, world then the program P_3 halts by going to the end of main.
- 4. $Q = P_3$ and y = z.

If P_1 is undecidable and there is a reduction of P_1 to P_2 , then P_2 is undecidable too.

Be careful

In the above theorem the reduction is from P_1 to P_2 , it is not from P_2 to P_1 :

If P_1 is undecidable and there is a reduction of P_1 to P_2 , then P_2 is undecidable too.

Be careful

In the above theorem the reduction is from P_1 to P_2 , it is not from P_2 to P_1 :

From a reduction of P_1 to P_2 :

 $P_2 \text{ decidable } \Rightarrow P_1 \text{ decidable}$ $P_1 \text{ undecidable } \Rightarrow P_2 \text{ undecidable}$

If P_1 is undecidable and there is a reduction of P_1 to P_2 , then P_2 is undecidable too.

Be careful

In the above theorem the reduction is from P_1 to P_2 , it is not from P_2 to P_1 :

From a reduction of P_1 to P_2 :

 P_2 decidable $\Rightarrow P_1$ decidable P_1 undecidable $\Rightarrow P_2$ undecidable

From a reduction of P_2 to P_1 :

 P_1 decidable $\Rightarrow P_2$ decidable (hypothesis false) P_2 undecidable $\Rightarrow P_1$ undecidable (hypothesis unknown)

References

- Bauer, A. (2017). Five States of Accepting Constructive Mathematics. Bulletin of the American Mathematical Society 54.3, pp. 481–498. DOI: 10.1090/bull/1556 (cit. on pp. 20, 21).
- Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on pp. 2, 31–33).