CM0081 Automata and Formal Languages § 4.2 Closure Properties of Regular Languages

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

Preliminaries

Conventions

- ▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Hopcroft, Motwani and Ullman 2007].
- ▶ The natural numbers include the zero, that is, $\mathbb{N} = \{0, 1, 2, ...\}$.
- \blacktriangleright The power set of a set A, that is, the set of its subsets, is denoted by $\mathcal{P}A$.

Preliminaries 2/64

Introduction

Let L and L^\prime be regular languages. The following languages are regular:

```
L \cup L'
                               (union)
L \cap L'
                               (intersection)
\overline{L}
                               (complement)
L-L'
                               (difference)
L^R
                               (reversal)
L^*
                               (closure)
L \cdot L'
                               (concatenation)
h(L)
                               (homomorphism)
h^{-1}(L)
                               (inverse homomorphism)
```

Introduction 3/64

Closure Under Union

Theorem 4.4

If L and L' are regular languages, then so is $L \cup L'$.

Closure Under Union 4/64

Closure Under Union

Theorem 4.4

If L and L' are regular languages, then so is $L \cup L'$.

Proof

(Using regular expressions)

Closure Under Union 5/64

Definition

Let L be a language over alphabet Σ . The **complement** of L is defined by

$$\overline{L}\coloneqq \Sigma^*-L.$$

Theorem 4.5

If L is a regular language, then so is \overline{L} .

Theorem 4.5

If L is a regular language, then so is \overline{L} .

Proof

Let $A=(Q,\Sigma,\delta,q_0,\pmb{F})$ be a DFA that accepts L. Then $B=(Q,\Sigma,\delta,q_0,\pmb{Q}-\pmb{F})$ is a DFA that accepts $\overline{L}.$

Question

'Do you see how to take a regular expression and change it into one that defines the complement language?' [Hopcroft, Motwani and Ullman 2007, p. 136]

Observation

Using the closure properties we can prove that a language is not regular.

Observation

Using the closure properties we can prove that a language is not regular.

Example

Given that

$$L_{=} = \{\, w \in \{0,1\}^* \mid w \text{ has an equal numbers of } 0\text{'s and } 1\text{'s} \,\}$$

is a language not regular. Prove that

$$L_{\neq} = \{\, w \in \{0,1\}^* \mid w \text{ has an unequal numbers of } 0\text{'s and } 1\text{'s} \,\}$$

is a language not regular.

Observation

Using the closure properties we can prove that a language is not regular.

Example

Given that

$$L_{=} = \{\, w \in \{0,1\}^* \mid w \text{ has an equal numbers of } 0\text{'s and } 1\text{'s} \,\}$$

is a language not regular. Prove that

$$L_{\neq} = \{\, w \in \{0,1\}^* \mid w \text{ has an unequal numbers of } 0\text{'s and } 1\text{'s} \,\}$$

is a language not regular.

Proof

Whiteboard.

Construction

Let A_L , A_M and A be DFAs given by

$$\begin{split} A_L &= (Q_L, \Sigma, \delta_L, q_L, F_L), \\ A_M &= (Q_M, \Sigma, \delta_M, q_M, F_M), \\ A &= (Q_L \times Q_M, \Sigma, \delta, (q_L, q_M), F_L \times F_M), \end{split}$$

where

$$\begin{split} \delta: (Q_L \times Q_M) \times \Sigma &\to Q_L \times Q_M \\ \delta((p,q),a) &= (\delta_L(p,a), \delta_M(q,a)). \end{split}$$

Closure Under Intersection 13/64

Theorem (Exercise 4.2.15)

For all $w \in \Sigma^*$,

$$\hat{\delta}((q_L,q_M),w) = (\hat{\delta}_L(q_L,w),\hat{\delta}_M(q_M,w)).$$

(continued on next slide)

Proof by induction on w

1. Basis step

$$\begin{split} \hat{\delta}((q_L,q_M),\varepsilon) &= (q_L,q_M) \\ &= (\hat{\delta}_L(q_L,\varepsilon),\hat{\delta}_M(q_M,\varepsilon)) \end{split} \qquad \text{(def. of $\hat{\delta}_L$ and $\hat{\delta}_M$)} \end{split}$$

(continued on next slide)

2. Inductive step

$$\begin{split} \hat{\delta}((q_L,q_M),xa) &= \delta(\hat{\delta}((q_L,q_M),x),a) & \text{(def. of } \hat{\delta}\text{)} \\ &= \delta((\hat{\delta}_L(q_L,x),\hat{\delta}_M(q_M,x)),a) & \text{(by IH)} \\ &= (\delta_L(\hat{\delta}_L(q_L,x),a),\delta_M(\hat{\delta}_M(q_M,x),a)) & \text{(def. of } \hat{\delta}\text{)} \\ &= (\hat{\delta}_L(q_L,xa),\hat{\delta}_M(q_M,xa)) & \text{(def. of } \hat{\delta}_L \text{ and } \hat{\delta}_L\text{)} \end{split}$$

Closure Under Intersection 16/64

Closure Under Intersection

Theorem 4.8

If L and L' are regular languages, then so is $L \cap L'$.

Closure Under Intersection 17/64

Closure Under Intersection

Theorem 4.8

If L and L' are regular languages, then so is $L \cap L'$.

Proof

Let A_L and $A_{L'}$ be DFAs accepting L and L'. The product construction of A_L and $A_{L'}$ accepts $L \cap L'$.

Closure Under Intersection 18/64

Closure Under Intersection

Theorem 4.8

If L and L' are regular languages, then so is $L \cap L'$.

Proof

Let A_L and $A_{L'}$ be DFAs accepting L and L'. The product construction of A_L and $A_{L'}$ accepts $L \cap L'$.

Different proof

The regular languages are closure under union and complement, and

$$L\cap L'=\overline{\overline{L}\cup\overline{L'}}.$$

Closure Under Intersection 19/64

Definition

Let $w = a_1 a_2 \cdots a_n$ be a word. The **reversal** of w is defined by

$$w^R \coloneqq a_n a_{n-1} \cdots a_1.$$

Closure Under Reversal 20/64

Definition

Let $w = a_1 a_2 \cdots a_n$ be a word. The **reversal** of w is defined by

$$w^R \coloneqq a_n a_{n-1} \cdots a_1.$$

Definition

Let L be a language on alphabet $\Sigma.$ The **reversal** of L is defined by

$$L^R \coloneqq \{ w^R \in \Sigma^* \mid w \in L \}.$$

Closure Under Reversal 21/64

Definition

Let $w = a_1 a_2 \cdots a_n$ be a word. The **reversal** of w is defined by

$$w^R \coloneqq a_n a_{n-1} \cdots a_1.$$

Definition

Let L be a language on alphabet Σ . The **reversal** of L is defined by

$$L^R \coloneqq \{ w^R \in \Sigma^* \mid w \in L \}.$$

Theorem 4.11

If L is regular language, then so is L^R (proof using automata or regular expressions)

Closure Under Reversal 22/64

Proof using automata

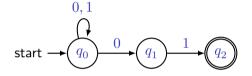
Let L be recognized by a finite automaton A. From the automaton A we get a finite automaton for L^R , by

- 1. Reversing all arcs.
- 2. Make the start state of A be the only accepting state.
- 3. Create a new start state p_0 with transitions $\delta(p_0,\varepsilon)=f$, where $f\in F$ are the accepting states of A.

Closure Under Reversal 23/64

Example

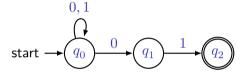
A NFA accepting all the binary strings that end in 01.



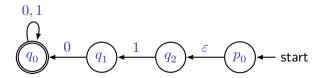
Closure Under Reversal 24/64

Example

A NFA accepting all the binary strings that end in 01.



A NFA accepting all the binary strings that start with 10.



Closure Under Reversal 25/64

Definition

An **algebraic structure** on a set $A \neq \emptyset$ is essentially a collection of n-ary operations on A [Birkhoff 1946, 1987].

Definition

An **algebraic structure** on a set $A \neq \emptyset$ is essentially a collection of n-ary operations on A [Birkhoff 1946, 1987].

Example (Semigroup)

A semigroup (S,*) is a set S with an associative binary operation $*: S \times S \to S$.

Definition

An algebraic structure on a set $A \neq \emptyset$ is essentially a collection of n-ary operations on A [Birkhoff 1946, 1987].

Example (Semigroup)

A semigroup (S,*) is a set S with an associative binary operation $*: S \times S \to S$.

Example (Monoid)

A **monoid** $(M, *, \varepsilon)$ is a semigroup (M, *) with an element $\varepsilon \in M$ which is an unit for *, i.e. $(\forall x)(x*\varepsilon = \varepsilon * x = x)$.

Closure Under Homomorphism

Definition

A homomorphism is a structure-preserving map between two algebraic structures.

Definition

A homomorphism is a structure-preserving map between two algebraic structures.

Example

A homomorphism between two semigroups (S,*) and (S',*') is a function $\varphi:S\to S'$ such that:

$$(\forall x)(\forall y)[\,\varphi(x*y)=\varphi(x)*'\varphi(y)\,].$$

Definition

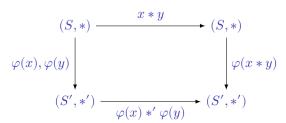
A **homomorphism** is a structure-preserving map between two algebraic structures.

Example

A homomorphism between two semigroups (S,*) and (S',*') is a function $\varphi:S\to S'$ such that:

$$(\forall x)(\forall y)[\,\varphi(x*y)=\varphi(x)*'\varphi(y)\,].$$

Graphically,



Closure Under Homomorphism

Example

A homomorphism between two monoids $(M,*,\varepsilon)$ and $(M',*',\varepsilon')$ is a function $\varphi:M\to M'$ such that:

$$(\forall x)(\forall y)[\,\varphi(x*y) = \varphi(x)*'\varphi(y)\,], \\ \varphi(\varepsilon) = \varepsilon'.$$

Definition

A homomorphism φ between two algebraic structures is [Cohn 1981]:

- ightharpoonup a monomorphism if φ is an injection,
- **>** an **epimorphism** if φ is a surjection,
- \blacktriangleright an **endomorphism** if φ is from an algebraic structure to itself,
- **>** an **isomorphism** if φ is a bijection,
- \blacktriangleright an **automorphism** if φ is a bijective endomorphism.

Closure Under Homomorphism

Definition

Let Σ and Γ be two alphabets. A **homomorphism** between (the monoids) $(\Sigma^*, \cdot, \varepsilon)$ and $(\Gamma^*, \cdot, \varepsilon)$ is a function

$$\begin{aligned} h: \Sigma^* &\to \Gamma^* \\ a_1 a_2 \cdots a_n &\mapsto h(a_1) h(a_2) \cdots h(a_n) \\ \varepsilon &\mapsto \varepsilon \end{aligned}$$

Note: For this reason the textbook talks about a homomorphism $h: \Sigma \to \Gamma^*$.

Closure Under Homomorphism

Example

Let $h:\{0,1\}^* \to \{a,b\}^*$ be a homomorphism defined by

$$h(0) = ab, \quad h(1) = \varepsilon.$$

Then

$$h(0011) = h(0)h(0)h(1)h(1)$$

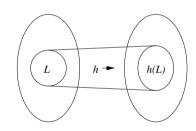
= $abab$.

Closure Under Homomorphism

Definition

Let L be a language over an alphabet Σ and let h be a homomorphism on Σ . The **application** of h to L, denoted h(L), is defined by †

$$h(L) \coloneqq \{ h(w) \mid w \in L \}.$$



[†]Figure from Hopcroft, Motwani and Ullman [2007, Fig. 4.5a].

Example

Let $h: \{0,1\}^* \to \{a,b\}^*$ be a homomorphism defined by

$$h(0) = ab, \quad h(1) = \varepsilon.$$

If
$$L = L(\mathbf{10^*1})$$
, then $h(L) = L((\boldsymbol{ab})^*)$.

Theorem 4.14

If L is a regular language over the alphabet Σ and h is a homomorphism on Σ , then h(L) is also regular.

Theorem 4.14

If L is a regular language over the alphabet Σ and h is a homomorphism on Σ , then h(L) is also regular.

Proof plan

- ▶ Let E be a regular expression such that L = L(E).
- Let h(E) be the regular expression replacing each symbol $a \in \Sigma$ by h(a) in the regular expression E.
- ▶ We need to prove that L(h(E)) = h(L(E)).

Proving
$$L(h(E)) = h(L(E))$$

- Basis step
 - ightharpoonup E is ε or \emptyset .
 - 1. h(E) = E (h does not affect E)
 - 2. h(L(E)) = L(E) (L(E) is empty or only contains ε)
 - 3. L(h(E)) = L(E) = h(L(E)) (by 1 and 2)

Proving
$$L(h(E)) = h(L(E))$$

- Basis step
 - E = a
 - 1. $L(E) = \{a\}$
 - 2. $h(L(E)) = \{h(a)\}$
 - 3. h(E) is the regular expression that is the string of symbols h(a)
 - 4. $L(h(E)) = \{h(a)\}$
 - 5. L(h(E)) = h(L(E)) (by transitivity between 2 and 4)

Proving
$$L(h(E)) = h(L(E))$$
 (continuation)

- ► Inductive step
 - E = F + G
 - 1. $L(E) = L(F) \cup L(G)$ (def. of +)
 - 2. h(E) = h(F+G) = h(F) + h(G) (def. of h(E))
 - 3. $L(h(E)) = L(h(F) + h(G)) = L(h(F)) \cup L(h(G))$ (def. of +)
 - 4. $h(L(E))=h(L(F)\cup L(G))=h(L(F))\cup h(L(G))$ (h is applied to a language by application to each of its strings)
 - 5. L(h(F)) = h(L(F) and L(h(G)) = h(L(G) (IH))
 - 6. L(h(E)) = h(L(E))

Proving L(h(E)) = h(L(E)) (continuation)

- ► Inductive step
 - ightharpoonup E = FG (similar to the previous case)

Proving
$$L(h(E)) = h(L(E))$$
 (continuation)

- ► Inductive step
 - ightharpoonup E = FG (similar to the previous case)
 - $E = F^*$ (similar to the previous case)
 - 1. $L(E) = (L(F))^*$ (def. of *)
 - 2. $h(E) = h(F^*) = (h(F))^*$ (def. of h(E))
 - 3. $L(h(E)) = L((h(F))^*) = (L(h(F)))^*$ (def. of *)
 - 4. $h(L(E)) = h((L(F))^*) = (h(L(F)))^*$ (h is applied to a language by application to each of its strings)
 - 5. L(h(F)) = h(L(F)) (IH)
 - 6. L(h(E)) = h(L(E))

Example

Let $\Sigma = \{0, 1, 2\}$. Prove that L is a language not regular.

$$L = \{ 0^i 1^j 2^k \mid i, j, k \in \mathbb{Z}^+ \text{ and } i \neq j \neq k \}.$$

Example

Let $\Sigma = \{0, 1, 2\}$. Prove that L is a language not regular.

$$L = \{ 0^i 1^j 2^k \mid i, j, k \in \mathbb{Z}^+ \text{ and } i \neq j \neq k \}.$$

Proof

1. We define the homomorphism

$$h(0) = 0, \quad h(1) = 1, \quad h(2) = \varepsilon.$$

Example

Let $\Sigma = \{0, 1, 2\}$. Prove that L is a language not regular.

$$L = \{ 0^i 1^j 2^k \mid i, j, k \in \mathbb{Z}^+ \text{ and } i \neq j \neq k \}.$$

Proof

1. We define the homomorphism

$$h(0) = 0, \quad h(1) = 1, \quad h(2) = \varepsilon.$$

2. The homomorphism h removes the 2^k s, so

$$h(L) = \{ \, 0^i 1^j \mid i,j \in \mathbb{Z}^+ \text{ and } i \neq j \, \}.$$

Example

Let $\Sigma = \{0, 1, 2\}$. Prove that L is a language not regular.

$$L = \{ 0^i 1^j 2^k \mid i, j, k \in \mathbb{Z}^+ \text{ and } i \neq j \neq k \}.$$

Proof

1. We define the homomorphism

$$h(0) = 0, \quad h(1) = 1, \quad h(2) = \varepsilon.$$

2. The homomorphism h removes the 2^k s, so

$$h(L) = \big\{\, 0^i 1^j \mid i,j \in \mathbb{Z}^+ \text{ and } i \neq j \,\big\}.$$

3. We know that h(L) is not regular, so L is not regular.

Example

Let L be a regular language and h a homomorphism on L. Define $h^{st}(L)$ by

$$h^*(L) = L \cup h(L) \cup h(h(L)) \cup h(h(h(L))) \cup \dots$$

Is $h^*(L)$ necessarily regular?

[†]From somewhere in Internet (I don't remember).

Example

Let L be a regular language and h a homomorphism on L. Define $h^{st}(L)$ by

$$h^*(L) = L \cup h(L) \cup h(h(L)) \cup h(h(h(L))) \cup \dots$$

Is $h^*(L)$ necessarily regular?

Solution

No. Let $L=\{01\}$ and h defined as h(0)=00 and h(1)=11. Then

$$\begin{split} h^*(L) &= \{01,0011,00001111,\dots\} \\ &= \big\{\, 0^n 1^n \mid n = 2^k \text{ for } k \geq 0\,\big\}, \end{split}$$

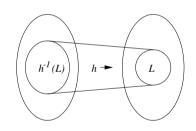
which is a language not regular.†

[†]From somewhere in Internet (I don't remember).

Definition

Let $h: \Sigma^* \to \Gamma^*$ be a homomorphism and $L \subseteq \Gamma^*$ a language. The **application** of h^{-1} to L, denoted $h^{-1}(L)$, is defined by \dagger

$$h^{-1}(L) := \{ w \in \Sigma^* \mid h(w) \in L \}.$$

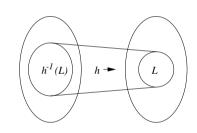


[†]Figure from Hopcroft, Motwani and Ullman [2007, Fig. 4.5b].

Definition

Let $h: \Sigma^* \to \Gamma^*$ be a homomorphism and $L \subseteq \Gamma^*$ a language. The **application** of h^{-1} to L, denoted $h^{-1}(L)$, is defined by \dagger

$$h^{-1}(L)\coloneqq\{\,w\in\Sigma^*\mid h(w)\in L\,\}.$$



Observation

Note that h^{-1} is a relation but it is not necessarily a function.

[†]Figure from Hopcroft, Motwani and Ullman [2007, Fig. 4.5b].

Example

Let $h: \{a,b\} \to \{0,1\}^*$ a homomorphism defined by

$$h(a) = 01, \quad h(b) = 10,$$

and let L be the language denoted by the regular expression $(00 + 1)^*$, i.e.

 $L = \{ w \in \{0,1\}^* \mid \text{all the 0's occur in adjacent pairs} \}.$

Example

Let $h: \{a,b\} \to \{0,1\}^*$ a homomorphism defined by

$$h(a) = 01, \quad h(b) = 10,$$

and let L be the language denoted by the regular expression $(00 + 1)^*$, i.e.

$$L = \{ w \in \{0,1\}^* \mid \text{all the 0's occur in adjacent pairs} \}.$$

Then

$$h^{-1}(L) = L((\boldsymbol{ba})^*).$$

Note that h^{-1} is not a function, but a relation.

It is necessary to prove $h(w) \in L \Leftrightarrow w = baba \cdots ba$.

Theorem 4.16

Let $h: \Sigma^* \to \Gamma^*$ be a homomorphism and $L \subseteq \Gamma^*$ a regular language. Then $h^{-1}(L)$ is regular (proof using automata).

Example

Prove that $L = \left\{\, 0^n 1^{2n} \mid n \geq 0\,\right\}$ is a language not regular.

Example

Prove that $L = \{0^n 1^{2n} \mid n \ge 0\}$ is a language not regular.

Proof

1. Given the homomorphism

$$h(0) = 0, \quad h(1) = 11,$$

then
$$h^{-1}(L) = \{ 0^n 1^n \mid n \ge 0 \}.$$

Example

Prove that $L = \{0^n 1^{2n} \mid n \ge 0\}$ is a language not regular.

Proof

1. Given the homomorphism

$$h(0) = 0, \quad h(1) = 11,$$

then
$$h^{-1}(L) = \{ 0^n 1^n \mid n \ge 0 \}.$$

2. Since $h^{-1}(L)$ is not regular, then L is not regular.

Some Exercises

Exercise 4.2.2

If L is a language, and a is a symbol, then L/a, the quotient of L and a, is the set of strings w such that wa is in L. For example, if $L=\{a,aab,baa\}$, then $L/a=\{\varepsilon,ba\}$. Prove that if L is regular, so is L/a. Hint: Start with a DFA for L and consider the set of accepting states.

Some Exercises 59/64

Some Exercises

Exercise 4.2.2

If L is a language, and a is a symbol, then L/a, the quotient of L and a, is the set of strings w such that wa is in L. For example, if $L=\{a,aab,baa\}$, then $L/a=\{\varepsilon,ba\}$. Prove that if L is regular, so is L/a. Hint: Start with a DFA for L and consider the set of accepting states.

Proof (Hopcroft, Motwani and Ullman [2007] solution)

Start with a DFA A for L. Construct a new DFA B, that is exactly the same as A, except that state q is an accepting state of B if and only if $\delta(q,a)$ is an accepting state of A. Then B accepts input string w if and only if A accepts wa; that is, L(B) = L/a.

Some Exercises 60/64

Closure Properties

Exercise 4.2.3

If L is a language, and a is a symbol, then $a \setminus L$ is the set of strings w such that aw is in L. For example, if $L = \{a, aab, baa\}$, then $a \setminus L = \{\varepsilon, ab\}$. Prove that if L is regular, so is $a \setminus L$. Hint: Start with a DFA for L and consider its start state.

Some Exercises 61/64

Closure Properties

Exercise 4.2.3

If L is a language, and a is a symbol, then $a \setminus L$ is the set of strings w such that aw is in L. For example, if $L = \{a, aab, baa\}$, then $a \setminus L = \{\varepsilon, ab\}$. Prove that if L is regular, so is $a \setminus L$. Hint: Start with a DFA for L and consider its start state.

Proof (Hopcroft, Motwani and Ullman [2007] solution)

Start with a DFA A for L. Construct a new DFA B, that is exactly the same as A, except that its start state is $\delta(q_0,a)$ where q_0 is the start state of A. Then B accepts input string w if and only if A accepts aw; that is, $L(B) = L \setminus a$.

Some Exercises 62/64

Closure Properties

Exercise 4.2.13.b

We can use closure properties to help prove certain languages are not regular. Start with the fact that the language

$$L_{0n1n} = \{ 0^n 1^n \mid n \ge 0 \}$$

is not a regular set. Prove that the following language not to be regular by transforming it, using operations known to preserve regularity, to L_{0n1n} :

$$L = \{ 0^n 1^m 2^{n-m} \mid n \ge m \ge 0 \}.$$

Some Exercises 63/64

References

Birkhoff, G. (1946). Universal Algebra. In: Comptes Rendus du Premier Congrès Canadien de Mathématiques. University of Toronto Press, pp. 310–326 (cit. on pp. 26–28).

— (1987). Universal Algebra. In: Selected Papers on Algebra and Topology by Garrett Birkhoff. Ed. by Rota, G.-C. and Oliveira, J. S. Birkhäuser, pp. 146–162 (cit. on pp. 26–28).

Cohn, P. M. [1965] (1981). Universal Algebra. Revised edition. Vol. 6. Mathematics and Its Applications. D. Reidel Publishing Company (cit. on p. 33).

Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on pp. 2, 9, 36, 51, 52, 59–62).

References 64/64