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Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫 𝐴.
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Alphabets and Strings
Definition
An alphabet is a finite, non-empty set of symbols.

Examples
Σ1 = {0, 1},
Σ2 = {𝑎, 𝑏, … , 𝑧},
Σ3 = { 𝑥 ∣ 𝑥 is a Unicode codepoint }.

Alphabets and Strings 3/41



Alphabets and Strings
Definition
An alphabet is a finite, non-empty set of symbols.

Examples
Σ1 = {0, 1},
Σ2 = {𝑎, 𝑏, … , 𝑧},
Σ3 = { 𝑥 ∣ 𝑥 is a Unicode codepoint }.

Alphabets and Strings 4/41



Alphabets and Strings
Definition
A string (or word or event) is a finite sequence of symbols of an alphabet.

Definition
The empty string, denoted by 𝜀, is the string with zero occurrences of symbols.

Observation
The empty string may be chosen from any alphabet.

Conventions
Alphabets: Σ, Γ, …
Symbols: 𝑎, 𝑏, 𝑐, …
Strings: 𝑤, 𝑥, 𝑦, 𝑧, …
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All Strings over an Alphabet
Definition
Let Σ be an alphabet. The set of all the strings over 𝚺 (including the empty string), de-
noted Σ∗, can be inductively defined by the following clauses:

i) Basis step: 𝜀 ∈ Σ∗,
ii) Inductive step: If 𝑥 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑥𝑎 ∈ Σ∗.

Or, equivalently, by using the following inference rules:

𝜀 ∈ Σ∗ 𝑥 ∈ Σ∗ 𝑎 ∈ Σ
𝑥𝑎 ∈ Σ∗
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Operations on Alphabets
Definition
Let 𝑎 be a symbol on an alphabet Σ. The powers of 𝐚, denoted 𝑎𝑛, with 𝑛 ≥ 0, is the string
formed by 𝑛 repetitions of the symbol 𝑎 (see, e.g. [Kozen 2012]). This operation is recursively
defined by:

(−)(−) ∶ Σ × ℕ → Σ∗

𝑎0 = 𝜀,
𝑎𝑛+1 = 𝑎𝑛𝑎.
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Operations on Strings
Definition
Let Σ be an alphabet. The length of a string 𝑥 on Σ, denoted |𝑥| is the number of symbols
in 𝑥. This function is recursively defined by

|−| ∶ Σ∗ → ℕ
|𝜀| = 0,

|𝑥𝑎| = |𝑥| + 1.
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Operations on Strings
Definition
Let Σ be an alphabet. The concatenation of strings is recursively defined by

(−) · (−) ∶ Σ∗ × Σ∗ → Σ∗

𝑥 · 𝜀 = 𝑥,
𝑥 · 𝑦𝑎 = (𝑥 · 𝑦)𝑎.

That is, let 𝑥 = 𝑎1𝑎2 … 𝑎𝑛 and 𝑦 = 𝑏1𝑏2 … 𝑏𝑛 two strings, then

𝑥 · 𝑦 = 𝑎1𝑎2 … 𝑎𝑚𝑏1𝑏2 … 𝑏𝑛.

Notation
We remove the dot in the concatenation, that is, 𝑥𝑦 ≔ 𝑥 · 𝑦.
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Operations on Strings
Some properties of concatenation
Let 𝑥, 𝑦 and 𝑧 be strings.
(i) Concatenation is associative, that is, 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧.
(ii) The empty empty word is the unit for concatenation, that is, 𝑥𝜀 = 𝜀𝑥 = 𝑥.
(iii) Concatenation is not commutative, that is, 𝑥𝑦 ≠ 𝑦𝑥.
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Operations on Strings
Example
Let Σ be an alphabet and let 𝑥 and 𝑦 be strings over Σ. Prove that

|𝑥𝑦| = |𝑥| + |𝑦|.
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Operations on Strings
Proof
By structural induction on 𝑦.

(or by mathematical induction on |𝑦|).

▶ Basis step (𝑦 = 𝜀):

(or |𝑦| = 0, then 𝑦 = 𝜀):

|𝑥𝜀| = |𝑥| (def. of concatenation)
= |𝑥| + |𝜀| (def. of length)

▶ Induction step (𝑦 = 𝑤𝑎):

(or |𝑦| = 𝑛 + 1, then 𝑦 = 𝑤𝑎 where |𝑤| = 𝑛):

|𝑥(𝑤𝑎)| = |(𝑥𝑤)𝑎| (def. of concatenation)
= |𝑥𝑤| + 1 (def. of length)
= (|𝑥| + |𝑤|) + 1 (IH)
= |𝑥| + (|𝑤| + 1) (arithmetic)
= |𝑥| + |𝑤𝑎| (def. of length)
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Operations on Strings
Strings, length and concatenation in Haskell

data List a = Nil | Cons a (List a)
data RList a = Lin | Snoc (RList a) a

lengthR :: RList a -> Int
lengthR Lin = 0 -- Eq. 1
lengthR (Snoc xs x) = lengthR xs + 1 -- Eq. 2

(+++) :: RList a -> RList a -> RList a
(+++) xs Lin = xs -- Eq. 1
(+++) xs (Snoc ys y) = Snoc (xs +++ ys) y -- Eq. 2
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Operations on Strings
Example
Prove that lengthR (xs +++ ys) =lengthR xs + lengthR ys.

Proof by structural recursion on ys

▶ Basis step (ys is Lin):

lengthR (xs +++ Lin)

= lengthR xs (Eq. 1 of (+++))
= lengthR xs +++ lengthR Lin (Eq. 1 of lengthR)
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Operations on Strings
Proof by structural recursion on |ys| (continuation)

▶ Induction step (ys is Snoc ys' y'):

lengthR (xs +++ (Snoc ys' y'))

= lengthR (Snoc (xs +++ ys') y')) (Eq. 2 of (+++))
= lengthR (xs +++ ys') + 1 (Eq. 2 of lengthR)
= (lengthR xs + lengthR ys') + 1 (IH)
= lengthR xs + (lengthR ys' + 1) (arithmetic)
= lengthR xs + lengthR (Snoc ys' y) (Eq. 2 of lengthR)
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Operations on Strings
Definition
Let 𝑥 be a string on an alphabet Σ. The powers of 𝐱, denoted 𝑥𝑛, with 𝑛 ≥ 0, is recursively
defined by

(−)(−) ∶ Σ∗ × ℕ → Σ∗

𝑥0 = 𝜀,
𝑥𝑛+1 = 𝑥𝑛 · 𝑥.
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Operations Alphabets
Definition
The 𝐧-power of an alphabet Σ, denoted Σ𝑛, is the set of strings of length 𝑛 over Σ.

Examples
Given Σ = {0, 1} then

Σ0 = {𝜀},
Σ1 = {0, 1},
Σ2 = {00, 01, 10, 11},
Σ3 = {000, 001, 010, 011, 100, 101, 110, 111}.
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Operations Alphabets
Example
Let Σ be an alphabet. Then

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ ⋯
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Languages
Definition
If Σ is an alphabet and 𝐿 ⊆ Σ∗ then 𝐿 is a language over Σ.

Examples
▶ ∅ and Σ∗ are languages over any alphabet
▶ The set of string of 0’s and 1’s with equal number of each

{𝜀, 01, 10, 0011, 0110, 1001, 1100, … }
▶ { 0𝑛1𝑛 ∣ 𝑛 ≥ 1 }
▶ {𝜀} ≠ ∅
▶ The set of binary numbers whose value is a prime
▶ The set of legal C programs
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Languages
Question
Is the set of legal English words a language?
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Decision Problems
Definition
Let a set 𝐴 the domain of a problem. A decision problem on 𝐴 is a function (see, e.g. [Kozen
2012])

𝑓 ∶ 𝐴 → {0, 1}.
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Decision Problems
Definition
Let 𝐿 ⊆ Σ∗ be a language and let 𝑤 ∈ Σ∗ be string. The decision problem for 𝐋 is to decide
whether or not 𝑤 ∈ 𝐿.

Some questions
(i) Is it a problem or a decision problem?
(ii) Is it a language or a problem?
(iii) Is the problem decidable or undecidable?
(iv) Is the problem tractable or intractable?
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