CM0081 Automata and Formal Languages
 § 9.2 An Undecidable Problem That Is Recursively Enumerable

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2024-1

Preliminaries

Conventions
The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Hopcroft, Motwani and Ullman 2007].

- The natural numbers include the zero, that is, $\mathbb{N}=\{0,1,2, \ldots\}$.
\rightarrow The power set of a set A, that is, the set of its subsets, is denoted by $\mathcal{P} A$.

Theorems About Recursive Languages

Theorem 9.3
If L is a recursive language, then \bar{L} is also a recursive language.
Proof
Whiteboard.

Theorems About Recursive Languages

```
Theorem 9.3
If L is a recursive language, then }\overline{L}\mathrm{ is also a recursive language.
Proof
Whiteboard.
```

Theorem 9.4
If both L and \bar{L} are recursively enumerable languages, then L is recursive (and \bar{L} is recursive as well by Theorem 9.3).

Proof
Whiteboard.

Theorems About Recursive Languages

Possible relations between a language L and its complement \bar{L}
(i) Both L and \bar{L} are recursive.

Theorems About Recursive Languages

Possible relations between a language L and its complement \bar{L}
(i) Both L and \bar{L} are recursive.
(ii) Neither L nor \bar{L} are recursively enumerable.

Theorems About Recursive Languages

Possible relations between a language L and its complement \bar{L}
(i) Both L and \bar{L} are recursive.
(ii) Neither L nor \bar{L} are recursively enumerable.
(iii) L is recursively enumerable but not recursive and \bar{L} is not recursively enumerable.

Theorems About Recursive Languages

Possible relations between a language L and its complement \bar{L}
(i) Both L and \bar{L} are recursive.
(ii) Neither L nor \bar{L} are recursively enumerable.
(iii) L is recursively enumerable but not recursive and \bar{L} is not recursively enumerable.
(iv) \bar{L} is recursively enumerable but not recursive and L is not recursively enumerable.

Theorems About Recursive Languages

Exercise 9.2.5

Let L be recursively enumerable and let \bar{L} be non recursively enumerable. Consider the language

$$
L^{\prime}=\{0 w \mid w \text { is in } L\} \cup\{1 w \mid w \text { is not in } L\} .
$$

Can you say for certain whether L^{\prime} is recursive, recursively enumerable, or non recursively enumerable? Justify your answer.

Solution (from Hopcroft, Motwani and Ullman [2007])

Suppose L^{\prime} were recursively enumerable. Then we could design a Turing machine M for \bar{L} as follows. Given input w, M changes its input to $1 w$ and simulates the hypothetical Turing machine for L^{\prime}. If that Turing machine accepts, then w is in \bar{L}, so M should accept. If the Turing machine for L^{\prime} never accepts, then neither does M. Thus, M would accept exactly \bar{L}, which contradicts the fact that \bar{L} is not recursively enumerable. We conclude that L^{\prime} is not recursively enumerable.

The Universal Language

Conventions

1. (M, w) : Represents the Turing machine M with input w.
2. w is a string of 0 's and 1 's.

Codification of a Turing machine with an input
Let w_{i} be the codification of a Turing machine M. The codification of (M, w) is defined by

$$
\overrightarrow{(M, w)}:=w_{i} 111 w
$$

The Universal Language

Definition

Let $\Sigma=\{0,1\}$. The universal language, denoted L_{u}, is the set of binary strings that encode a pair (M, w) such that $w \in \mathrm{~L}(M)$, that is,

$$
\mathrm{L}_{\mathrm{u}}:=\left\{\overrightarrow{(M, w)} \in \Sigma^{*} \mid w \in \mathrm{~L}(M)\right\} .
$$

The Universal Language

```
Theorem
The language L}\mp@subsup{L}{u}{}\mathrm{ is recursively enumerable.
Idea of the proof
There exists a Turing machine U such that }\mp@subsup{L}{u}{}=L(U)\mathrm{ . The machine U is called a universal
Turing machine.
```


The Universal Language

```
Theorem 9.6
The language \(L_{u}\) is recursively enumerable but not recursive.
Proof of \(\mathrm{L}_{\mathrm{u}}\) is not recursive (by contradiction (proof of negation))
Suppose \(L_{u}\) is recursive
\(\Rightarrow \overline{\mathrm{L}_{\mathrm{u}}}\) is recursive
\(\Rightarrow \mathrm{L}_{\mathrm{d}}\) is recursive (see next slide)
\(\Rightarrow\) Contradiction because \(\mathrm{L}_{\mathrm{d}}\) is non recursively enumerable
```


The Universal Language

From the recursiveness of $\overline{\mathrm{L}_{\mathrm{u}}}$ to the recursiveness of L_{d}
Given a terminating Turing machine for accepting $\overline{\mathrm{L}_{\mathrm{u}}}$ we could use this machine for building a terminating Turing machine for accepting $\mathrm{L}_{\mathrm{d}} \cdot{ }^{\dagger}$

Since L_{d} is not recursive (because it is not recursive enumerable) then $\overline{L_{u}}$ is not recursive.
${ }^{\dagger}$ Figure from Hopcroft, Motwani and Ullman [2007, Fig. 9.6].

Code for a Universal Turing Machine

Code for U
Since U is a Turing machine exists i (1654 digits) such that $\mathrm{U}=M_{i}$ given by (using a different codification) [Penrose 1991, pp. 56-57]:

724485533533931757719839503961571123795236067255655963110814479660650 505940424109031048361363235936564444345838222688327876762655614469281 411771501784255170755408565768975334635694247848859704693472573998858 228382779529468346052106116983594593879188554632644092552550582055598 945189071653741489603309675302043155362503498452983232065158304766414 213070881932971723415105698026273468642992183817215733348282307345371 342147505974034518437235959309064002432107734217885149276079759763441 512307958639635449226915947965461471134570014504816733756217257346452 273105448298078496512698878896456976090663420447798902191443793283001 949357096392170390483327088259620130177372720271862591991442827543742
(continued on next slide)

Code for a Universal Turing Machine

235135567513408422229988937441053430547104436869587640517812801943753 081387063994277282315642528923751456544389905278079324114482614235728 619311833261065612275553181020751108533763380603108236167504563585216 421486954234718742643754442879006248582709124042207653875426445413345 174856629157429990950262300973373813772416217274772361020678685400289 356608569682262014198248621698902609130940298570600174300670086896759 034473417412787425581201549366393899690581773859165405535670409282133 222163141097871081459978669599704509681841906299443656015145490488092 208448003482249207730403043188429899393135266882349662101947161910701 461968523192847482034495897709553561107027581748733327296678998798473 284098190764851272631001740166787363477605857245036964434897992034489 997455662402937487668839751404451665707750060513883991668814072545544 665222050724262392379211525318162512536305093172863142200406457130527 5802307665183351995689139748137504926429605010013651980186945639498

Turing's Universal Turing Machine

Based on M-functions (subroutines with parameters) [Sicard 1997; Copeland 2004b].

- The machine is composed by 12 symbols and 4.000 instructions, approximately [Sicard Ramírez 1998].

Small Universal Turing Machines

Notation

Let $\operatorname{UTM}(m, n)$ be the class of universal Turing machines with m states and n symbols.

Small Universal Turing Machines

Notation

Let $\operatorname{UTM}(m, n)$ be the class of universal Turing machines with m states and n symbols.
Theorem
If $\operatorname{UTM}(m, n) \neq \emptyset$ then [Shannon 1956]:
(i) $\operatorname{UTM}\left(2, n^{\prime}\right) \neq \emptyset$, where n^{\prime} is at most $4 m n+n$ and
(ii) $\operatorname{UTM}\left(m^{\prime}, 2\right) \neq \emptyset$, where $m^{\prime}=\left(2^{l}-1\right) m$ and l is the smaller integer such that $m \leq 2^{l}$.

Small Universal Turing Machines

Theorem

There exists universal Turing machines in the following classes [Rogozhin 1996; Neary and Woods 2012]:

$\operatorname{UTM}(m, n)$	Author(s)
$(24,2)$	Rogozhin [1996]
$(19,2)$	Baiocchi [2001]
$(18,2)$	Neary and Woods [2007]
$(15,2)$	Neary and Woods [2009]

Small Universal Turing Machines

Theorem (continuation)

UTM (m, n)	Author(s)
$(10,3)$	Rogozhin [1996]
$(9,3)$	Neary and Woods [2009]
$(7,4)$	Rogozhin [1996]
$(6,4)$	Neary and Woods [2009]
$(5,5)$	Rogozhin [1996]
$(4,6)$	Rogozhin [1996]
$(3,10)$	Rogozhin [1996]
$(2,18)$	Rogozhin [1996]

Small Universal Turing Machines

Theorem
The following classes are empty [Rogozhin 1996; Neary and Woods 2012]:

$\operatorname{UTM}(m, n)$	Author(s)
$(m, 1)$	trivial
$(3,2)$	Rogozhin [1996]
$(2,3)$	Rogozhin [1996]
$(2,2)$	Rogozhin [1996]
$(1, n)$	Herman [1968]

Wolfram Turing Machine

Conway's Game of Life

Examples
(From Wikipedia)

Pulsar (Oscillator)
Author: Jokey Smurf

Glider (Spaceship)
Author: Rodrigo Silveira Camargo

Conway's Game of Life

Rules
(i) Any live cell with fewer than two live neighbours dies, as if caused by under-population.

Conway's Game of Life

Rules

(i) Any live cell with fewer than two live neighbours dies, as if caused by under-population.
(ii) Any live cell with two or three live neighbours lives on to the next generation.

Conway's Game of Life

Rules

(i) Any live cell with fewer than two live neighbours dies, as if caused by under-population.
(ii) Any live cell with two or three live neighbours lives on to the next generation.
(iii) Any live cell with more than three live neighbours dies, as if by overcrowding.

Conway's Game of Life

Rules

(i) Any live cell with fewer than two live neighbours dies, as if caused by under-population.
(ii) Any live cell with two or three live neighbours lives on to the next generation.
(iii) Any live cell with more than three live neighbours dies, as if by overcrowding.
(iv) Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

Conway's Game of Life

Rules

(i) Any live cell with fewer than two live neighbours dies, as if caused by under-population.
(ii) Any live cell with two or three live neighbours lives on to the next generation.
(iii) Any live cell with more than three live neighbours dies, as if by overcrowding.
(iv) Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

Theorem

It is possible codified a universal Turing machine in Conway's Game of Life [Rendell 2011].

The Halting Problem

The language of the halting problem
Let $\Sigma=\{0,1\}$. The original Turing machine accepted by halting, no by final state.

$$
\mathrm{H}(M):=\left\{w \in \Sigma^{*} \mid M \text { halts given the input } w\right\} .
$$

The Halting Problem

The language of the halting problem
Let $\Sigma=\{0,1\}$. The original Turing machine accepted by halting, no by final state.

$$
\mathrm{H}(M):=\left\{w \in \Sigma^{*} \mid M \text { halts given the input } w\right\} .
$$

We define the language of the halting problem by

$$
\mathrm{L}_{\mathrm{hp}}:=\left\{\overrightarrow{(M, w)} \in \Sigma^{*} \mid w \in \mathrm{H}(M)\right\} .
$$

The Halting Problem

The language of the halting problem
Let $\Sigma=\{0,1\}$. The original Turing machine accepted by halting, no by final state.

$$
\mathrm{H}(M):=\left\{w \in \Sigma^{*} \mid M \text { halts given the input } w\right\} .
$$

We define the language of the halting problem by

$$
\mathrm{L}_{\mathrm{hp}}:=\left\{\overrightarrow{(M, w)} \in \Sigma^{*} \mid w \in \mathrm{H}(M)\right\} .
$$

Exercise 9.2.1
Show that L_{hp} is recursively enumerable but not recursive.

The Halting Problem: State of Art^{\dagger}

${ }^{\dagger}$ Figure from [Margenstern 2000].

The Halting Problem

Observation
The halting problem was introduced and named by Davis [1958, p. 70] not by Turing himself, contrary to popular belief [Copeland 2004a, p. 40].

The Halting Problem

Observation
The halting problem was introduced and named by Davis [1958, p. 70] not by Turing himself, contrary to popular belief [Copeland 2004a, p. 40].

Practical approach
'In contrast to popular belief, proving termination is not always impossible.' [Cook, Podelski and Rybalchenko 2011, p. 1]

References

Baiocchi, C. (2001). Three Small Universal Turing Machines. In: Machines, Computations, and Universality (MCU 2001). Ed. by Margenstern, M. and Rogozhin, Y. Vol. 2055. Lecture Notes in Computer Science. Springer, pp. 1-10. DoI: 10.1007/3-540-45132-3_1 (cit. on p. 20).

Cook, B., Podelski, A. and Rybalchenko, A. (2011). Proving Program Termination. Communications of the ACM 54.5, pp. 88-98. DOI: 10.1145/1941487. 1941509 (cit. on pp. 34, 35).

Copeland, B. J. (2004a). Hypercomputation: Philosophical Issues. Theoretical Computer Science 317.1-3, pp. 251-267. DOI: 10.1016/j.tcs.2003.12.014 (cit. on pp. 34, 35). Davis, M. (1958). Computability and Unsolvability. McGraw-Hill (cit. on pp. 34, 35). Herman, G. T. (1968). The Uniform Halting Problem for Generalized One State Turing Machines. In: 9th Annual Symposium on Switching and Automata Theory (SWAT 1968). IEEE, pp. 368-372. DOI: 10.1109/SWAT. 1968.36 (cit. on p. 22).
Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on pp. 2, 9, 14).

References

E Margenstern，M．（2000）．Frontier Between Decidability and Undecidability：A Survey．The－ oretical Computer Science 231．2，pp．217－251．DoI：10．1016／S0304－3975（99）00102－4 （cit．on p．33）．
Neary，T．and Woods，D．（2007）．Four Small Turing Machines．In：Machines，Compu－ tations，and Universality（MCU 2007）．Ed．by Durand－Lose，J．and Margenstern，M． Vol．4664．Lecture Notes in Computer Science．Springer，pp．242－254．DOI：10．1007／978－ 3－540－74593－8＿21（cit．on p．20）．
屠－（2009）．Four Small Turing Machines．Fundamenta Informaticae 91．1，pp．123－144． DOI：10．3233／FI－2009－0036（cit．on pp．20，21）．
围－（2012）．The Complexity of Small Universal Turing Machines：A Survey．In：Theory and Practice of Computer Science（SOFSEM 2012）．Ed．by Bieliková，M．，Friedrich，G．， Gottlob，G．，Katzenbeisser，S．and Turán，G．Vol．7147．Lecture Notes in Computer Science． Springer，pp．385－405．DOI：10．1007／978－3－642－27660－6＿32（cit．on pp．20，22）． Penrose，R．（1991）．The Emperor＇s New Mind．Penguin Books（cit．on p．15）．

References

Rendell, P. (2011). A Universal Turing Machine in Conway's Game of Life. In: Proceedings of the 2011 International Conference on High Performance Computing \& Simulation (HPCS 2011). Ed. by Smari, W. W. IEEE, pp. 764-772. DOI: 10.1109/HPCSim. 2011. 5999906 (cit. on pp. 25-29).
R Rogozhin, Y. (1996). Small Universal Turing Machines. Theoretical Computer Science 168, pp. 215-240. DOI: 10.1016/S0304-3975 (96) 00077-1 (cit. on pp. 20-22).
埥 Shannon, C. E. (1956). A Universal Turing Machine with Two Internal States. In: Automata Studies. Ed. by Shannon, C. E. and McCarthy, J. Vol. 34. Annals of Mathematics Studies. Princenton University Press, pp. 157-165 (cit. on pp. 18, 19).
睩 Sicard, A. (1997). Máquina Universal de Turing: Algunas Indicaciones para su Construcción. Revista Universidad EAFIT 33.108, pp. 61-106 (cit. on p. 17).
Sicard, A. and Copeland, B. J. (2004b). Appendix: Subroutines and M-functions. In: The Essential Turing. Vol. 317. 1-3, pp. 54-57. DOI: 10.1016/j.tcs.2003.12. 014 (cit. on p. 17).

References

Sicard Ramírez, A. (1998). Máquinas de Turing Dinámicas: Historia y Desarrollo de una Idea. MA thesis. Departamento de Informática y Sistemas. Universidad EAFIT (cit. on p. 17).

