CM0081 Automata and Formal Languages § 3.4 Algebraic Laws for Regular Expressions

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

Preliminaries

Conventions

- ▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Hopcroft, Motwani and Ullman 2007].
- ▶ The natural numbers include the zero, that is, $\mathbb{N} = \{0, 1, 2, ...\}$.
- \blacktriangleright The power set of a set A, that is, the set of its subsets, is denoted by $\mathcal{P}A$.

Preliminaries 2/26

Definition

Two regular expressions with variables are **equivalent** if whatever languages we substitute for the variables, the results of the two expressions are the same language.

Definition

Two regular expressions with variables are **equivalent** if whatever languages we substitute for the variables, the results of the two expressions are the same language.

Notation

Let M, N and P be regular expression variables.

Definition

Two regular expressions with variables are **equivalent** if whatever languages we substitute for the variables, the results of the two expressions are the same language.

Notation

Let M, N and P be regular expression variables.

Sugar syntax

$$M^+ := MM^*,$$

$$M? := \varepsilon + M.$$

Some laws for union

$$(M+N)+P=M+(N+P)$$
 (associativity)
 $M+\emptyset=\emptyset+M=M$ (identity)
 $M+N=N+M$ (commutativity)
 $M+M=M$ (idempotence)

Observation

There is no inverse for union.

Some laws for concatenation

```
(MN)P = M(NP) (associativity)

M\varepsilon = \varepsilon M = M (identity)

MN \neq NM (non-commutativity)

M\emptyset = \emptyset M = \emptyset (\emptyset is the annihilator for concatenation)
```

Observation

There is no inverse for concatenation.

Some laws for union and concatenation

$$M(N+P) = MN + MP$$
 (distributive)
 $(M+N)P = MP + NP$ (distributive)

Some laws for closure

$$(M^*)^* = M^*$$
 (idempotence)
$$\emptyset^* = \varepsilon$$

$$\varepsilon^* = \varepsilon$$

$$(\varepsilon + M)^* = M^*$$

$$M^* = M^+ + \varepsilon$$

Observation

A complete set of axioms for the regular expressions is indicated in [Kozen 2012, Lecture 9].

Simplification of Regular Expressions

Example

$$\begin{array}{lll} \mathbf{0} + (\varepsilon + \mathbf{1})\underline{(\varepsilon + \mathbf{1})^*}\mathbf{0} &= \mathbf{0} + \underline{(\varepsilon + \mathbf{1})\mathbf{1}^*}\mathbf{0} & \qquad & \left((\varepsilon + M)^* = M^*\right) \\ &= \mathbf{0} + (\underline{\varepsilon}\mathbf{1}^* + \mathbf{1}\mathbf{1}^*)\mathbf{0} & \qquad & \left(\text{distributive}\right) \\ &= \mathbf{0} + (\mathbf{1}^* + \underline{\mathbf{1}}\mathbf{1}^*)\mathbf{0} & \qquad & \left(\text{identity}\right) \\ &= \mathbf{0} + (\underline{\mathbf{1}^* + \mathbf{1}^+})\mathbf{0} & \qquad & \left(\text{def. } L^+\right) \\ &= \underline{\mathbf{0} + \mathbf{1}^*}\mathbf{0} & \qquad & \left(\text{equivalence}\right) \\ &= \mathbf{1}^*\mathbf{0} & \qquad & \left(\text{equivalence}\right) \end{array}$$

Method

Let E and F be two regular expressions with the same set of variables $\{M_1, \dots, M_n\}$.

To test if E = F:

- 1. Convert E and F to concrete regular expressions C and D, replacing each M_i by a different symbol a_i , for $i=1,2,\ldots,n$.
- 2. Test whether L(C) = L(D). If so, then E = F, and if not $E \neq F$.

Method

Let E and F be two regular expressions with the same set of variables $\{M_1, \dots, M_n\}$.

To test if E = F:

- 1. Convert E and F to concrete regular expressions C and D, replacing each M_i by a different symbol a_i , for $i=1,2,\ldots,n$.
- 2. Test whether L(C) = L(D). If so, then E = F, and if not $E \neq F$.

Observation

We are proving by example!

Example

Prove or disprove that $M^* = M^*M^*$.

Example

Prove or disprove that $M^* = M^*M^*$.

Proof

We replace the variable M by the concrete regular expression ${\it a}$.

$$a^* \stackrel{?}{=} a^*a^*$$
.

Example

Prove or disprove that $M^* = M^*M^*$.

Proof

We replace the variable M by the concrete regular expression ${\it a}.$

$$\boldsymbol{a}^* \stackrel{?}{=} \boldsymbol{a}^* \boldsymbol{a}^*.$$

Because $L(\boldsymbol{a}^*) = L(\boldsymbol{a}^*\boldsymbol{a}^*)$ we conclude that

$$M^* = M^*M^*.$$

Example

Prove or disprove that M+NM=(M+N)M.

Example

Prove or disprove that M + NM = (M + N)M.

Refutation

We replace the variables M and N by the concrete regular expressions ${\it a}$ and ${\it b}$ respectively.

$$a + ba \stackrel{?}{=} (a + b)a.$$

Example

Prove or disprove that M + NM = (M + N)M.

Refutation

We replace the variables M and N by the concrete regular expressions ${\it a}$ and ${\it b}$ respectively.

$$a + ba \stackrel{?}{=} (a + b)a$$
.

Because $aa \notin L(a + ba)$ and $aa \in L((a + b)a)$ then

$$L(\boldsymbol{a} + \boldsymbol{b}\boldsymbol{a}) \neq L((\boldsymbol{a} + \boldsymbol{b})\boldsymbol{a}).$$

So, we can conclude

$$M + NM \neq (M + N)M$$
.

Example (Exercise 3.4.2.d)

Prove or disprove that $(M+N)^*N=(M^*N)^*$.

Example (Exercise 3.4.2.d)

Prove or disprove that $(M + N)^*N = (M^*N)^*$.

Refutation

We replace the variables M and N by the concrete regular expressions ${\it a}$ and ${\it b}$ respectively.

$$(\boldsymbol{a}+\boldsymbol{b})^*\boldsymbol{b}\stackrel{?}{=} (\boldsymbol{a}^*\boldsymbol{b})^*.$$

Example (Exercise 3.4.2.d)

Prove or disprove that $(M+N)^*N = (M^*N)^*$.

Refutation

We replace the variables M and N by the concrete regular expressions ${\it a}$ and ${\it b}$ respectively.

$$(\boldsymbol{a}+\boldsymbol{b})^*\boldsymbol{b}\stackrel{?}{=} (\boldsymbol{a}^*\boldsymbol{b})^*.$$

Since $\varepsilon \notin (\boldsymbol{a} + \boldsymbol{b})^* \boldsymbol{b}$ and $\varepsilon \in (\boldsymbol{a}^* \boldsymbol{b})^*$ then

$$(M+N)^*N \neq (M^*N)^*.$$

Example (counter-example)

Extensions of the previous test beyond regular expressions may fail.

Example (counter-example)

Extensions of the previous test beyond regular expressions may fail.

- 1. Add \cap to the regular expression operators.
- 2. Test if $M \cap N \cap P = M \cap N$.
- 3. From M = a, N = b and P = c and since

$$\{a\}\cap\{b\}\cap\{c\}=\emptyset=\{a\}\cap\{b\},$$

we should conclude that the 'property' is true.

Example (counter-example)

Extensions of the previous test beyond regular expressions may fail.

- 1. Add \cap to the regular expression operators.
- 2. Test if $M \cap N \cap P = M \cap N$.
- 3. From M = a, N = b and P = c and since

$$\{a\}\cap\{b\}\cap\{c\}=\emptyset=\{a\}\cap\{b\},$$

we should conclude that the 'property' is true.

4. But, the 'property' is false. For example, if M=N=a and $P=\emptyset$ then

$$M \cap N \cap P \neq M \cap N$$
.

5. Therefore, the test is not valid!

References

Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 2).

Kozen, D. C. [1997] (2012). Automata and Computability. Third printing. Undergraduate Texts in Computer Science. Springer. DOI: 10.1007/978-1-4612-1844-9 (cit. on p. 10).

References 26/26