CM0081 Automata and Formal Languages

§ 9.1 A Language That Is Not Recursively Enumerable

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2024-1

Preliminaries

Conventions
The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Hopcroft, Motwani and Ullman 2007].

- The natural numbers include the zero, that is, $\mathbb{N}=\{0,1,2, \ldots\}$.
\rightarrow The power set of a set A, that is, the set of its subsets, is denoted by $\mathcal{P} A$.

Undecidability

Recall

- A language L is recursively enumerable iff exists a Turing machine M such that $L=\mathrm{L}(M)$.

Undecidability

Recall

- A language L is recursively enumerable iff exists a Turing machine M such that $L=\mathrm{L}(M)$.
- A language L is recursive iff exists a Turing machine M such that
(i) $L=\mathrm{L}(M)$ and
(ii) M always halt (even if it does not accept).

Undecidability

Recall

- A language L is recursively enumerable iff exists a Turing machine M such that $L=\mathrm{L}(M)$.
- A language L is recursive iff exists a Turing machine M such that
(i) $L=\mathrm{L}(M)$ and
(ii) M always halt (even if it does not accept).

Definition
A language L is undecidable iff L is not recursive.

Why 'Recursive'?

The term 'recursive' as synonym for 'decidable' comes from Mathematics (prior to computers).

Why 'Recursive'?

- The term 'recursive' as synonym for 'decidable' comes from Mathematics (prior to computers).
- Equivalent formalization to Turing-machine computability based on recursive functions.

Why 'Recursive'?

The term 'recursive' as synonym for 'decidable' comes from Mathematics (prior to computers).

- Equivalent formalization to Turing-machine computability based on recursive functions.
\rightarrow A function is recursive if only if it is Turing-machine computable (see, e.g. [Boolos, Burges and Jeffrey 2007], [Hermes 1969] or [Kleene 1974]).

Why 'Recursive'?

- The term 'recursive' as synonym for 'decidable' comes from Mathematics (prior to computers).
$>$ Equivalent formalization to Turing-machine computability based on recursive functions.
A function is recursive if only if it is Turing-machine computable (see, e.g. [Boolos, Burges and Jeffrey 2007], [Hermes 1969] or [Kleene 1974]).
- Recursive problem: 'it is sufficiently simple that I can write a recursive function to solve it, and the function always finishes.' [p. 385]

Codification of Turing Machines

Convention
The Turing machine M is of the form:

$$
M=\left(\left\{q_{1}, \ldots, q_{n}\right\},\{0,1\},\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{m}\right\}, \delta, q_{1}, B,\left\{q_{2}\right\}\right)
$$

where $X_{1}=0, X_{2}=1$ and $X_{3}=B$. Moreover, $D_{1}=L$ and $D_{2}=R$.

Codification of Turing Machines

Convention
The Turing machine M is of the form:

$$
M=\left(\left\{q_{1}, \ldots, q_{n}\right\},\{0,1\},\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{m}\right\}, \delta, q_{1}, B,\left\{q_{2}\right\}\right),
$$

where $X_{1}=0, X_{2}=1$ and $X_{3}=B$. Moreover, $D_{1}=L$ and $D_{2}=R$.
Codification of an instruction
The instruction $\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)$ is codified by

$$
0^{i} 10^{j} 10^{k} 10^{l} 10^{m} .
$$

Codification of Turing Machines

Codification of a Turing machine
Let $C_{1}, C_{2}, \ldots, C_{p}$ be the codifications of the instructions of a Turing machine M. The codification of M is defined by

$$
\vec{M}:=C_{1} 11 C_{2} 11 \ldots 11 C_{p}
$$

Codification of Turing Machines

Codification of a Turing machine
Let $C_{1}, C_{2}, \ldots, C_{p}$ be the codifications of the instructions of a Turing machine M. The codification of M is defined by

$$
\vec{M}:=C_{1} 11 C_{2} 11 \ldots 11 C_{p}
$$

Observation
Note that there are other possible codes for M.

Codification of Turing Machines

Enumeration of the binary strings
We ordered the binary strings by [length-]lexicographical order (strings are ordered by length, and strings of equal length are ordered lexicographically).

Codification of Turing Machines

Enumeration of the binary strings (continuation)
If w is a binary string, we call w the i-th string where $1 w$ is the binary integer i. We refer to the i-th string as w_{i}.

$$
\begin{aligned}
& \varepsilon \rightarrow 1_{b} \quad \rightarrow 1, \\
& 0 \rightarrow 10_{b} \rightarrow 2 \text {, } \\
& 1 \rightarrow 11_{b} \rightarrow 3 \text {, } \\
& 00 \rightarrow 100_{b} \rightarrow 4 \text {, } \\
& 01 \rightarrow 101_{b} \rightarrow 5 \text {, } \\
& 10 \rightarrow 110_{b} \rightarrow 6 \text {, }
\end{aligned}
$$

Codification of Turing Machines

i-th Turing machine
Given a Turing machine M with code w_{i}, we can now associate a natural number to it: M is the i-th Turing machine, referred to as M_{i}.

Codification of Turing Machines

i-th Turing machine
Given a Turing machine M with code w_{i}, we can now associate a natural number to it: M is the i-th Turing machine, referred to as M_{i}.

Convention
If w_{i} is not a valid Turing machine code, we shall take M_{i} to be the Turing machine with one state and no transitions, that is,

$$
\mathrm{L}\left(M_{i}\right)=\emptyset .
$$

Cantor's Diagonalisation Proof

Theorem
The open interval $(0,1)$ is an uncountable (non-enumerable) set.

Cantor's Diagonalisation Proof

Proof.
Let's suppose $(0,1)$ is (infinite) countable.

$$
\begin{aligned}
r_{1} & =0 . d_{11} d_{12} d_{13} d_{14} \cdots \\
r_{2} & =0 . d_{21} d_{22} d_{23} d_{24} \cdots \\
r_{3} & =0 . d_{31} d_{32} d_{33} d_{34} \cdots
\end{aligned}
$$

Let $r=0 . d_{1} d_{2} d_{3} \ldots \in(0,1)$, where

$$
d_{i}= \begin{cases}4, & \text { if } d_{i i} \neq 4 \\ 5, & \text { if } d_{i i}=4\end{cases}
$$

The number r does not belong to the above enumeration. Therefore the interval $(0,1)$ is an uncountable set.

The Diagonalization Language

Definition
Let $\Sigma=\{0,1\}$. The diagonalization language is defined by

$$
\mathrm{L}_{\mathrm{d}}:=\left\{w_{i} \in \Sigma^{*} \mid w_{i} \notin \mathrm{~L}\left(M_{i}\right)\right\}
$$

The Diagonalization Language

Definition

Let $\Sigma=\{0,1\}$. The diagonalization language is defined by

$$
\mathrm{L}_{\mathrm{d}}:=\left\{w_{i} \in \Sigma^{*} \mid w_{i} \notin \mathrm{~L}\left(M_{i}\right)\right\} .
$$

		w_{j}				
M_{i}						
		1	2	3	4	\ldots
	1	0	1	1	0	\ldots
	2	1	1	0	1	\ldots
	3	0	1	1	0	\ldots
	4	1	1	0	0	\ldots
	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

$$
a_{i j}= \begin{cases}1, & \text { if } w_{j} \in \mathrm{~L}\left(M_{i}\right) \\ 0, & \text { if } w_{j} \notin \mathrm{~L}\left(M_{i}\right) .\end{cases}
$$

Language $\mathrm{L}\left(M_{i}\right)$'s vector: i-th row
L_{d} : Complement of the diagonal
Is it possible that L_{d} be in a row?

The Diagonalization Language

Theorem 9.2
The language L_{d} is not recursively enumerable.
Proof by contradiction (proof of negation)
Whiteboard.

References

Boolos, G. S., Burges, J. P. and Jeffrey, R. C. [1974] (2007). Computability and Logic. 5th ed. Cambridge University Press (cit. on pp. 6-9).
Hermes, H. [1961] (1969). Enumerability . Decidability . Computability. Second revised edition. Translated G. T. Hermann and O. Plassmann. Springer-Verlag (cit. on pp. 6-9). Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 2).
Kleene, S. C. [1952] (1974). Introduction to Metamathematics. Seventh reprint. NorthHolland (cit. on pp. 6-9).

