
CM0081 Automata and Formal Languages
§ 9.1 A Language That Is Not Recursively Enumerable

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

1/23



Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫 𝐴.

Preliminaries 2/23



Undecidability
Recall

▶ A language 𝐿 is recursively enumerable iff exists a Turing machine 𝑀 such that
𝐿 = L(𝑀).

▶ A language 𝐿 is recursive iff exists a Turing machine 𝑀 such that
(i) 𝐿 = L(𝑀) and
(ii) 𝑀 always halt (even if it does not accept).

Definition
A language 𝐿 is undecidable iff 𝐿 is not recursive.

Undecidability 3/23



Undecidability
Recall

▶ A language 𝐿 is recursively enumerable iff exists a Turing machine 𝑀 such that
𝐿 = L(𝑀).

▶ A language 𝐿 is recursive iff exists a Turing machine 𝑀 such that
(i) 𝐿 = L(𝑀) and
(ii) 𝑀 always halt (even if it does not accept).

Definition
A language 𝐿 is undecidable iff 𝐿 is not recursive.

Undecidability 4/23



Undecidability
Recall

▶ A language 𝐿 is recursively enumerable iff exists a Turing machine 𝑀 such that
𝐿 = L(𝑀).

▶ A language 𝐿 is recursive iff exists a Turing machine 𝑀 such that
(i) 𝐿 = L(𝑀) and
(ii) 𝑀 always halt (even if it does not accept).

Definition
A language 𝐿 is undecidable iff 𝐿 is not recursive.

Undecidability 5/23



Why ‘Recursive’?

▶ The term ‘recursive’ as synonym for ‘decidable’ comes from Mathematics (prior to
computers).

▶ Equivalent formalization to Turing-machine computability based on recursive functions.
▶ A function is recursive if only if it is Turing-machine computable (see, e.g. [Boolos,

Burges and Jeffrey 2007], [Hermes 1969] or [Kleene 1974]).
▶ Recursive problem: ‘it is sufficiently simple that I can write a recursive function to solve it,

and the function always finishes.’ [p. 385]

Undecidability 6/23



Why ‘Recursive’?

▶ The term ‘recursive’ as synonym for ‘decidable’ comes from Mathematics (prior to
computers).

▶ Equivalent formalization to Turing-machine computability based on recursive functions.

▶ A function is recursive if only if it is Turing-machine computable (see, e.g. [Boolos,
Burges and Jeffrey 2007], [Hermes 1969] or [Kleene 1974]).

▶ Recursive problem: ‘it is sufficiently simple that I can write a recursive function to solve it,
and the function always finishes.’ [p. 385]

Undecidability 7/23



Why ‘Recursive’?

▶ The term ‘recursive’ as synonym for ‘decidable’ comes from Mathematics (prior to
computers).

▶ Equivalent formalization to Turing-machine computability based on recursive functions.
▶ A function is recursive if only if it is Turing-machine computable (see, e.g. [Boolos,

Burges and Jeffrey 2007], [Hermes 1969] or [Kleene 1974]).

▶ Recursive problem: ‘it is sufficiently simple that I can write a recursive function to solve it,
and the function always finishes.’ [p. 385]

Undecidability 8/23



Why ‘Recursive’?

▶ The term ‘recursive’ as synonym for ‘decidable’ comes from Mathematics (prior to
computers).

▶ Equivalent formalization to Turing-machine computability based on recursive functions.
▶ A function is recursive if only if it is Turing-machine computable (see, e.g. [Boolos,

Burges and Jeffrey 2007], [Hermes 1969] or [Kleene 1974]).
▶ Recursive problem: ‘it is sufficiently simple that I can write a recursive function to solve it,

and the function always finishes.’ [p. 385]

Undecidability 9/23



Codification of Turing Machines
Convention
The Turing machine 𝑀 is of the form:

𝑀 = ({𝑞1, … , 𝑞𝑛}, {0, 1}, {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚}, 𝛿, 𝑞1, 𝐵, {𝑞2}),

where 𝑋1 = 0, 𝑋2 = 1 and 𝑋3 = 𝐵. Moreover, 𝐷1 = 𝐿 and 𝐷2 = 𝑅.

Codification of an instruction
The instruction 𝛿(𝑞𝑖, 𝑋𝑗) = (𝑞𝑘, 𝑋𝑙, 𝐷𝑚) is codified by

0𝑖10𝑗10𝑘10𝑙10𝑚.

Codification of Turing Machines 10/23



Codification of Turing Machines
Convention
The Turing machine 𝑀 is of the form:

𝑀 = ({𝑞1, … , 𝑞𝑛}, {0, 1}, {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚}, 𝛿, 𝑞1, 𝐵, {𝑞2}),

where 𝑋1 = 0, 𝑋2 = 1 and 𝑋3 = 𝐵. Moreover, 𝐷1 = 𝐿 and 𝐷2 = 𝑅.

Codification of an instruction
The instruction 𝛿(𝑞𝑖, 𝑋𝑗) = (𝑞𝑘, 𝑋𝑙, 𝐷𝑚) is codified by

0𝑖10𝑗10𝑘10𝑙10𝑚.

Codification of Turing Machines 11/23



Codification of Turing Machines
Codification of a Turing machine
Let 𝐶1, 𝐶2, … , 𝐶𝑝 be the codifications of the instructions of a Turing machine 𝑀 . The codific-
ation of 𝑀 is defined by

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑀 ≔ 𝐶111𝐶211 … 11𝐶𝑝.

Observation
Note that there are other possible codes for 𝑀 .

Codification of Turing Machines 12/23



Codification of Turing Machines
Codification of a Turing machine
Let 𝐶1, 𝐶2, … , 𝐶𝑝 be the codifications of the instructions of a Turing machine 𝑀 . The codific-
ation of 𝑀 is defined by

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑀 ≔ 𝐶111𝐶211 … 11𝐶𝑝.

Observation
Note that there are other possible codes for 𝑀 .

Codification of Turing Machines 13/23



Codification of Turing Machines
Enumeration of the binary strings
We ordered the binary strings by [length-]lexicographical order (strings are ordered by length,
and strings of equal length are ordered lexicographically).

(continued on next slide)

Codification of Turing Machines 14/23



Codification of Turing Machines
Enumeration of the binary strings (continuation)
If 𝑤 is a binary string, we call 𝑤 the 𝑖-th string where 1𝑤 is the binary integer 𝑖. We refer to
the 𝑖-th string as 𝑤𝑖.

𝜀 → 1𝑏 → 1,
0 → 10𝑏 → 2,
1 → 11𝑏 → 3,

00 → 100𝑏 → 4,
01 → 101𝑏 → 5,
10 → 110𝑏 → 6,

⋮

𝜀

0

1

00

01

10

11

000

001
010

011
100

101
110

111

…

…
…

…
…

…
…

…
Codification of Turing Machines 15/23



Codification of Turing Machines
𝑖-th Turing machine
Given a Turing machine 𝑀 with code 𝑤𝑖, we can now associate a natural number to it: 𝑀 is
the 𝑖-th Turing machine, referred to as 𝑀𝑖.

Convention
If 𝑤𝑖 is not a valid Turing machine code, we shall take 𝑀𝑖 to be the Turing machine with one
state and no transitions, that is,

L(𝑀𝑖) = ∅.

Codification of Turing Machines 16/23



Codification of Turing Machines
𝑖-th Turing machine
Given a Turing machine 𝑀 with code 𝑤𝑖, we can now associate a natural number to it: 𝑀 is
the 𝑖-th Turing machine, referred to as 𝑀𝑖.

Convention
If 𝑤𝑖 is not a valid Turing machine code, we shall take 𝑀𝑖 to be the Turing machine with one
state and no transitions, that is,

L(𝑀𝑖) = ∅.

Codification of Turing Machines 17/23



Cantor’s Diagonalisation Proof
Theorem
The open interval (0, 1) is an uncountable (non-enumerable) set.

(continued on next slide)

The Diagonalization Language 18/23



Cantor’s Diagonalisation Proof
Proof.
Let’s suppose (0, 1) is (infinite) countable.

𝑟1 = 0.𝑑11𝑑12𝑑13𝑑14 …
𝑟2 = 0.𝑑21𝑑22𝑑23𝑑24 …
𝑟3 = 0.𝑑31𝑑32𝑑33𝑑34 …

  ⋮  
Let 𝑟 = 0.𝑑1𝑑2𝑑3 … ∈ (0, 1), where

𝑑𝑖 = {4, if 𝑑𝑖𝑖 ≠ 4;
5, if 𝑑𝑖𝑖 = 4.

The number 𝑟 does not belong to the above enumeration. Therefore the interval (0, 1) is an
uncountable set.

The Diagonalization Language 19/23



The Diagonalization Language
Definition
Let Σ = {0, 1}. The diagonalization language is defined by

Ld ≔ { 𝑤𝑖 ∈ Σ∗ | 𝑤𝑖 ∉ L(𝑀𝑖) }.

𝑤𝑗

𝑀𝑖

1 2 3 4 …
1 0 1 1 0 …
2 1 1 0 1 …
3 0 1 1 0 …
4 1 1 0 0 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

𝑎𝑖𝑗 = {1, if 𝑤𝑗 ∈ L(𝑀𝑖);
0, if 𝑤𝑗 ∉ L(𝑀𝑖).

Language L(𝑀𝑖)’s vector: 𝑖-th row
Ld: Complement of the diagonal
Is it possible that Ld be in a row?

The Diagonalization Language 20/23



The Diagonalization Language
Definition
Let Σ = {0, 1}. The diagonalization language is defined by

Ld ≔ { 𝑤𝑖 ∈ Σ∗ | 𝑤𝑖 ∉ L(𝑀𝑖) }.

𝑤𝑗

𝑀𝑖

1 2 3 4 …
1 0 1 1 0 …
2 1 1 0 1 …
3 0 1 1 0 …
4 1 1 0 0 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

𝑎𝑖𝑗 = {1, if 𝑤𝑗 ∈ L(𝑀𝑖);
0, if 𝑤𝑗 ∉ L(𝑀𝑖).

Language L(𝑀𝑖)’s vector: 𝑖-th row
Ld: Complement of the diagonal
Is it possible that Ld be in a row?

The Diagonalization Language 21/23



The Diagonalization Language
Theorem 9.2
The language Ld is not recursively enumerable.

Proof by contradiction (proof of negation)
Whiteboard.

The Diagonalization Language 22/23



References
Boolos, G. S., Burges, J. P. and Jeffrey, R. C. [1974] (2007). Computability and Logic.
5th ed. Cambridge University Press (cit. on pp. 6–9).
Hermes, H. [1961] (1969). Enumerability ⋅ Decidability ⋅ Computability. Second revised
edition. Translated G. T. Hermann and O. Plassmann. Springer-Verlag (cit. on pp. 6–9).
Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata
Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 2).
Kleene, S. C. [1952] (1974). Introduction to Metamathematics. Seventh reprint. North-
Holland (cit. on pp. 6–9).

References 23/23


	Preliminaries
	Undecidability
	Codification of Turing Machines
	The Diagonalization Language
	References

