CM0246 Discrete Structures Representing Relations

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2014-2

Matrices

Definition

A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix.

$$
\boldsymbol{A}=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Matrices

Definition

Let $\boldsymbol{A}_{m \times k}$ and $\boldsymbol{B}_{k \times n}$ be two matrices. The product $\boldsymbol{A} \boldsymbol{B}$ is the matrix $m \times n$ defined by

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & & \vdots \\
\boldsymbol{a}_{\boldsymbol{i 1}} & \boldsymbol{a}_{\boldsymbol{i 2}} & \cdots & \boldsymbol{a}_{\boldsymbol{i k}} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m k}
\end{array}\right]\left[\begin{array}{ccccc}
b_{11} & b_{12} & \cdots & \boldsymbol{b}_{\mathbf{1 j}} & \cdots \\
b_{21} & b_{22} & \cdots & b_{1 n} \\
\vdots & \vdots & & \vdots & \\
b_{2 \boldsymbol{j}} & \cdots & b_{2 n} \\
& {\left[\begin{array}{ccccc}
c_{11} & b_{k 2} & \cdots & \boldsymbol{b}_{\boldsymbol{k j}} & \cdots \\
c_{21} & c_{22} & \cdots & b_{k n}
\end{array}\right]=} \\
\vdots & \vdots & c_{2 n} \\
c_{m 1} & c_{m 2} & \cdots & c_{m n}
\end{array}\right]
$$

where

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i k} b_{k j} .
$$

Matrices

Definition

Let $\boldsymbol{A}=\left[a_{i j}\right]$ be a $m \times n$ matrix. The transpose of \boldsymbol{A}, denoted by \boldsymbol{A}^{t}, is the $n \times m$ matrix obtained by interchanging the rows and columns of \boldsymbol{A}.

Matrices

Boolean operations

$$
\begin{aligned}
& b_{1} \wedge b_{2}= \begin{cases}1, & \text { if } b_{1}=b_{2}=1 \\
0, & \text { otherwise }\end{cases} \\
& b_{1} \vee b_{2}= \begin{cases}1, & \text { if } b_{1}=1 \text { or } b_{2}=1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Matrices

Definition

Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ Booleans matrices. The join (unión)/meet (intersección) of \boldsymbol{A} and \boldsymbol{B}, denoted $\boldsymbol{A} \vee \boldsymbol{B} / \boldsymbol{A} \wedge \boldsymbol{B}$, is the Boolean matrix with (i, j)-th entry $a_{i j} \vee b_{i j} / a_{i j} \wedge b_{i j}$.

Matrices

Definition

Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ Booleans matrices. The join (unión)/meet (intersección) of \boldsymbol{A} and \boldsymbol{B}, denoted $\boldsymbol{A} \vee \boldsymbol{B} / \boldsymbol{A} \wedge \boldsymbol{B}$, is the Boolean matrix with (i, j)-th entry $a_{i j} \vee b_{i j} / a_{i j} \wedge b_{i j}$.

Example

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

Matrices

Definition

Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ Booleans matrices. The join (unión)/meet (intersección) of \boldsymbol{A} and \boldsymbol{B}, denoted $\boldsymbol{A} \vee \boldsymbol{B} / \boldsymbol{A} \wedge \boldsymbol{B}$, is the Boolean matrix with (i, j)-th entry $a_{i j} \vee b_{i j} / a_{i j} \wedge b_{i j}$.

Example

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right], \\
\boldsymbol{A} \vee \boldsymbol{B} & =\left[\begin{array}{lll}
1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\
0 \vee 1 & 1 \vee 1 & 0 \vee 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right],
\end{aligned}
$$

Matrices

Definition

Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ Booleans matrices. The join (unión)/meet (intersección) of \boldsymbol{A} and \boldsymbol{B}, denoted $\boldsymbol{A} \vee \boldsymbol{B} / \boldsymbol{A} \wedge \boldsymbol{B}$, is the Boolean matrix with (i, j)-th entry $a_{i j} \vee b_{i j} / a_{i j} \wedge b_{i j}$.

Example

$$
\begin{aligned}
& \boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right], \\
& \boldsymbol{A} \vee \boldsymbol{B}=\left[\begin{array}{lll}
1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\
0 \vee 1 & 1 \vee 1 & 0 \vee 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right], \\
& \boldsymbol{A} \wedge \boldsymbol{B}=\left[\begin{array}{lll}
1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\
0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

Matrices

Definition

Let $\boldsymbol{A}_{m \times k}$ and $\boldsymbol{B}_{k \times n}$ be two Boolean matrices. The Boolean product of \boldsymbol{A} and \boldsymbol{B}, denoted $\boldsymbol{A} \odot \boldsymbol{B}$, is the Boolean matrix $m \times n$ with (i, j)-th entry

$$
c_{i j}=\left(a_{i 1} \wedge b_{1 j}\right) \vee\left(a_{i 2} \wedge b_{2 j}\right) \vee \cdots \vee\left(a_{i k} \wedge b_{k j}\right)
$$

Matrices

Example (product of Boolean matrices)

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Matrices

Example (product of Boolean matrices)

$$
\left.\begin{array}{c}
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \\
\boldsymbol{A} \odot \boldsymbol{B}
\end{array}=\left[\begin{array}{ll}
(1 \wedge 1) \vee(0 \wedge 0) & (1 \wedge 1) \vee(0 \wedge 1) \\
(0 \wedge 1) \vee(1 \wedge 0) & (0 \wedge 1) \vee(1 \wedge 1) \\
(1 \wedge 0) \vee(0 \wedge 1) \\
(1 \wedge 1) \vee(0 \wedge 0) & (1 \wedge 1) \vee(0 \wedge 1) \\
(1 \wedge 0) \vee(1 \wedge 1) \\
\hline
\end{array}\right] \quad \begin{array}{lll}
1 \vee 0 & 1 \vee 0 & 0 \vee 0 \\
0 \vee 0 & 0 \vee 1 & 0 \vee 1 \\
1 \vee 0 & 1 \vee 0 & 0 \vee 0
\end{array}\right],
$$

Representing Relations Using Boolean Matrices

Representing of relations using Boolean matrices
Let R be a relation from a A to B. The relation R can be represented by the Boolean matrix $\boldsymbol{M}_{R}=\left[m_{i j}\right]$, where

$$
m_{i j}= \begin{cases}1, & \text { if }\left(a_{i}, b_{j}\right) \in R \\ 0, & \text { otherwise }\end{cases}
$$

Representing Relations Using Boolean Matrices

Representing of relations using Boolean matrices
Let R be a relation from a A to B. The relation R can be represented by the Boolean matrix $\boldsymbol{M}_{R}=\left[m_{i j}\right]$, where

$$
m_{i j}= \begin{cases}1, & \text { if }\left(a_{i}, b_{j}\right) \in R \\ 0, & \text { otherwise }\end{cases}
$$

Example
Whiteboard.

Representing Relations Using Boolean Matrices
Properties of relations from their Boolean matrix representation See slides $\S 8.3$ for the 6th ed. of Rosen's textbook.

Representing Relations Using Boolean Matrices
Boolean matrix representing of the combination of relations

$$
\begin{aligned}
\boldsymbol{M}_{R_{1} \cup R_{2}} & =\boldsymbol{M}_{R_{1}} \vee \boldsymbol{M}_{R_{2}}, \\
\boldsymbol{M}_{R_{1} \cap R_{2}} & =\boldsymbol{M}_{R_{1}} \wedge \boldsymbol{M}_{R_{2}} \\
\boldsymbol{M}_{S \circ R} & =\boldsymbol{M}_{R} \odot \boldsymbol{M}_{S} .
\end{aligned}
$$

Representing Relations Using Boolean Matrices

Example

$$
\begin{aligned}
& \boldsymbol{M}_{R}=\begin{array}{c}
1 \\
2 \\
3
\end{array}\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), \quad \boldsymbol{M}_{S}=\begin{array}{c}
1 \\
2 \\
2 \\
3
\end{array}\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right), \\
& \boldsymbol{M}_{S \circ R}=\boldsymbol{M}_{R} \odot \boldsymbol{M}_{S}=\begin{array}{l}
1 \\
2 \\
3
\end{array}\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

Representing Relations Using Digraphs

Definition

A digraph (or directed graph) consists of a set V of vertices together with a set E of ordered pairs of elements of V called edges.

Representing Relations Using Digraphs

Definition

A digraph (or directed graph) consists of a set V of vertices together with a set E of ordered pairs of elements of V called edges.

Representing relations using digraphs
The relation R on a set A is represented by a digraph where $V=A$ and (a, b) is an edge if $(a, b) \in R$.

Representing Relations Using Digraphs ${ }^{\dagger}$

Example

${ }^{\dagger}$ Figure source: (Rosen 2012, § 9.3, Figs. 4 and 5).

Representing Relations Using Digraphs ${ }^{\dagger}$

Properties of relations

${ }^{\dagger}$ Figure source: (Rosen 2012, § 9.3, Fig. 6).

References

Rosen, K. H. (2012). Discrete Mathematics and Its Applications. 7th ed. McGraw-Hill (cit. on pp. 20, 21).

