CM0246 Discrete Structures
 Representing Graphs and Graph Isomorphism

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Graphs

Graphs are discrete structures consisting of vertices and edges that connect these vertices.

Graphs

Graphs are discrete structures consisting of vertices and edges that connect these vertices.

We need different kinds of graphs for solving problems using graph models.

Graphs

Graphs are discrete structures consisting of vertices and edges that connect these vertices.

We need different kinds of graphs for solving problems using graph models.

Example (computer networks)

Graphs

Graphs are discrete structures consisting of vertices and edges that connect these vertices.

We need different kinds of graphs for solving problems using graph models.

Example (computer networks)

- A computer network

Graphs

Graphs are discrete structures consisting of vertices and edges that connect these vertices.

We need different kinds of graphs for solving problems using graph models.

Example (computer networks)

- A computer network
- A computer network with multiple links between data centers (parallel edges)

Graphs

Graphs are discrete structures consisting of vertices and edges that connect these vertices.

We need different kinds of graphs for solving problems using graph models.
Example (computer networks)

- A computer network
- A computer network with multiple links between data centers (parallel edges)
- A computer network with diagnostic links (loops)

Graphs

Graphs are discrete structures consisting of vertices and edges that connect these vertices.

We need different kinds of graphs for solving problems using graph models.

Example (computer networks)

- A computer network
- A computer network with multiple links between data centers (parallel edges)
- A computer network with diagnostic links (loops)
- A computer network with one-way links (edges with direction)

Graphs

Graphs are discrete structures consisting of vertices and edges that connect these vertices.

We need different kinds of graphs for solving problems using graph models.

Example (computer networks)

- A computer network
- A computer network with multiple links between data centers (parallel edges)
- A computer network with diagnostic links (loops)
- A computer network with one-way links (edges with direction)
- A computer network with multiple one-way links (parallel edges with direction)

Simple Graphs

Remark

In all the definitions related to graphs, the set of vertices is non-empty. Moreover, we shall assume that this set is finite.

Simple Graphs

Remark

In all the definitions related to graphs, the set of vertices is non-empty. Moreover, we shall assume that this set is finite.

Definition

A simple graph $G=(V, E)$ consist of V, a set of vertices, and E, a set of unordered pairs of distinct elements of V called edges.

Simple Graphs

Remark

In all the definitions related to graphs, the set of vertices is non-empty. Moreover, we shall assume that this set is finite.

Definition

A simple graph $G=(V, E)$ consist of V, a set of vertices, and E, a set of unordered pairs of distinct elements of V called edges.

Remark

In a simple graph there is no parallel edges nor loops.

Simple Graphs

Remark
 In all the definitions related to graphs, the set of vertices is non-empty. Moreover, we shall assume that this set is finite.

Definition

A simple graph $G=(V, E)$ consist of V, a set of vertices, and E, a set of unordered pairs of distinct elements of V called edges.

Remark

In a simple graph there is no parallel edges nor loops.
Example
Whiteboard.

Multigraphs

Definition
A multigraph $G=(V, E)$ consist of set V of vertices, a set E of edges and a function

$$
f: E \rightarrow\{\{u, v\} \mid u, v \in V, u \neq v\} .
$$

Multigraphs

Definition

A multigraph $G=(V, E)$ consist of set V of vertices, a set E of edges and a function

$$
f: E \rightarrow\{\{u, v\} \mid u, v \in V, u \neq v\} .
$$

The edges e_{i} and e_{j} are called parallel edges if $f\left(e_{i}\right)=f\left(e_{j}\right)$.

Multigraphs

Definition

A multigraph $G=(V, E)$ consist of set V of vertices, a set E of edges and a function

$$
f: E \rightarrow\{\{u, v\} \mid u, v \in V, u \neq v\} .
$$

The edges e_{i} and e_{j} are called parallel edges if $f\left(e_{i}\right)=f\left(e_{j}\right)$.
Remark
In a multigraph there is no loops.

Multigraphs

Definition

A multigraph $G=(V, E)$ consist of set V of vertices, a set E of edges and a function

$$
f: E \rightarrow\{\{u, v\} \mid u, v \in V, u \neq v\} .
$$

The edges e_{i} and e_{j} are called parallel edges if $f\left(e_{i}\right)=f\left(e_{j}\right)$.
Remark
In a multigraph there is no loops.

Example
Whiteboard.

Directed Graphs

Definition

A direct graph $G=(V, E)$ consist of a set of vertices V and a set of edges E that are ordered pairs of elements of V.

Directed Graphs

Definition

A direct graph $G=(V, E)$ consist of a set of vertices V and a set of edges E that are ordered pairs of elements of V.

Example
Whiteboard.

Adjacent Vertices and Incident edges

Definition 1

Two vertices u and v in an undirected graph G are called adjacent in G if $\{u, v\}$ is an edge of G. If $e=\{u, v\}$, the edge e is called incident with the vertices u and v.

Adjacent Vertices and Incident edges

Definition 1
Two vertices u and v in an undirected graph G are called adjacent in G if $\{u, v\}$ is an edge of G. If $e=\{u, v\}$, the edge e is called incident with the vertices u and v.

Example
Whiteboard.

Degrees of the Vertices

Definition

The degree of a vertex v in an undirected graph, denoted $\delta(v)$, is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.

Degrees of the Vertices

Exercise

Find the degree of each vertex in the following graph:

Degrees of the Vertices

Exercise

Find the degree of each vertex in the following graph:

Solution

$$
\delta(a)=4, \delta(b)=\delta(e)=6, \delta(c)=1 \text { and } \delta(d)=5
$$

Vertex Degrees

Theorem 1 (the handshaking theorem, p. 511)
Let $G=(V, E)$ be an undirected graph with e edges, then

$$
2 e=\sum_{v \in V} \delta(v) .
$$

Vertex Degrees

Theorem 1 (the handshaking theorem, p. 511)
Let $G=(V, E)$ be an undirected graph with e edges, then

$$
2 e=\sum_{v \in V} \delta(v) .
$$

Proof.

Each edge contributes two to the sum of the degrees of the vertices because an edge is incident with exactly two (possibly equal) vertices. This means that the sum of the degrees of the vertices is twice the number of edges.

Representing Graphs

- Adjacency matrices
- Incidence matrices

Adjacency Matrices

Definition

Let $G=(V, E)$ be a simple graph.

Adjacency Matrices

Definition

Let $G=(V, E)$ be a simple graph.
The vertices of G are listed arbitrarily as $v_{1}, v_{2}, \ldots, v_{n}$.

Adjacency Matrices

Definition

Let $G=(V, E)$ be a simple graph.
The vertices of G are listed arbitrarily as $v_{1}, v_{2}, \ldots, v_{n}$. The adjacency matrix $\boldsymbol{A}_{G}=\left[a_{i j}\right]$ of G is a $n \times n$ matrix, where

$$
a_{i j}= \begin{cases}1, & \text { if }\left\{v_{i}, v_{j}\right\} \text { is an edge of } G ; \\ 0, & \text { otherwise }\end{cases}
$$

Adjacency Matrices

Definition

Let $G=(V, E)$ be a simple graph.
The vertices of G are listed arbitrarily as $v_{1}, v_{2}, \ldots, v_{n}$.
The adjacency matrix $\boldsymbol{A}_{G}=\left[a_{i j}\right]$ of G is a $n \times n$ matrix, where

$$
a_{i j}= \begin{cases}1, & \text { if }\left\{v_{i}, v_{j}\right\} \text { is an edge of } G ; \\ 0, & \text { otherwise. }\end{cases}
$$

Remark

The matrix \boldsymbol{A}_{G} is Boolean, symmetric and it has zeros in the diagonal.

Adjacency Matrices

Definition

Let $G=(V, E)$ be a simple graph.
The vertices of G are listed arbitrarily as $v_{1}, v_{2}, \ldots, v_{n}$.
The adjacency matrix $\boldsymbol{A}_{G}=\left[a_{i j}\right]$ of G is a $n \times n$ matrix, where

$$
a_{i j}= \begin{cases}1, & \text { if }\left\{v_{i}, v_{j}\right\} \text { is an edge of } G ; \\ 0, & \text { otherwise. }\end{cases}
$$

Remark

The matrix \boldsymbol{A}_{G} is Boolean, symmetric and it has zeros in the diagonal.

Example
Whiteboard.

Adjacency Matrices

Adjacency matrices for undirected graphs with loops and parallel edges In this case, the (i, j)-entry represents the number of edges that are associated to $\left\{v_{i}, v_{j}\right\}$.

Adjacency Matrices

Adjacency matrices for undirected graphs with loops and parallel edges In this case, the (i, j)-entry represents the number of edges that are associated to $\left\{v_{i}, v_{j}\right\}$.

Remark
The matrix is symmetric.

Adjacency Matrices

Adjacency matrices for undirected graphs with loops and parallel edges In this case, the (i, j)-entry represents the number of edges that are associated to $\left\{v_{i}, v_{j}\right\}$.

Remark
The matrix is symmetric.
Example
Whiteboard.

Adjacency Matrices

Definition

Let $G=(V, E)$ be a direct graph where the vertices of G are listed arbitrarily as $v_{1}, v_{2}, \ldots, v_{n}$.

Adjacency Matrices

Definition

Let $G=(V, E)$ be a direct graph where the vertices of G are listed arbitrarily as $v_{1}, v_{2}, \ldots, v_{n}$.

The adjacency matrix \boldsymbol{A}_{G} is defined by

$$
a_{i j}= \begin{cases}1, & \text { if }\left(v_{i}, v_{j}\right) \text { is an edge of } G ; \\ 0, & \text { otherwise. }\end{cases}
$$

Adjacency Matrices

Definition

Let $G=(V, E)$ be a direct graph where the vertices of G are listed arbitrarily as $v_{1}, v_{2}, \ldots, v_{n}$.

The adjacency matrix \boldsymbol{A}_{G} is defined by

$$
a_{i j}= \begin{cases}1, & \text { if }\left(v_{i}, v_{j}\right) \text { is an edge of } G ; \\ 0, & \text { otherwise. }\end{cases}
$$

Example
Whiteboard.

Incidence Matrices

Definition

Let $G=(V, E)$ be an undirected graph.

Incidence Matrices

Definition

Let $G=(V, E)$ be an undirected graph.
Suppose $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices and $e_{1}, e_{2}, \ldots, e_{m}$ are the edges.

Incidence Matrices

Definition

Let $G=(V, E)$ be an undirected graph.
Suppose $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices and $e_{1}, e_{2}, \ldots, e_{m}$ are the edges.
The incidence matrix $\boldsymbol{M}_{G}=\left[m_{i j}\right]$ of G is a $n \times m$ Boolean matrix, where

$$
m_{i j}= \begin{cases}1, & \text { when } e_{j} \text { is incident with } v_{i} \\ 0, & \text { otherwise }\end{cases}
$$

Incidence Matrices

Definition

Let $G=(V, E)$ be an undirected graph.
Suppose $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices and $e_{1}, e_{2}, \ldots, e_{m}$ are the edges.
The incidence matrix $\boldsymbol{M}_{G}=\left[m_{i j}\right]$ of G is a $n \times m$ Boolean matrix, where

$$
m_{i j}= \begin{cases}1, & \text { when } e_{j} \text { is incident with } v_{i} \\ 0, & \text { otherwise }\end{cases}
$$

Example
Whiteboard.

Isomorphism of Graphs

Definition

The simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a bijective function f from V_{1} to V_{2} with the property that u and v are adjacent in G_{1}, if and only if, $f(u)$ and $f(v)$ are adjacent in G_{2}, for all u and v in V_{1}.

Isomorphism of Graphs

Example

The following simple graphs are isomorphic.

Isomorphism of Graphs

Example

The following simple graphs are isomorphic.

The bijective function f preserves adjacency.

$$
\begin{aligned}
& f:\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \rightarrow\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& f\left(u_{1}\right)=v_{1}, f\left(u_{2}\right)=v_{4}, f\left(u_{3}\right)=v_{3} \text { and } f\left(u_{4}\right)=v_{2}
\end{aligned}
$$

Isomorphism of Graphs

Remark

Determining whether two simple graphs are isomorphic is often difficult because if $|A|=|B|=n$ then

$$
\mid\{f: A \rightarrow B \mid f \text { is a bijection }\} \mid=n!.
$$

Isomorphism of Graphs

Definition
A property preserved by isomorphism of graphs is called a graph invariant property.

Isomorphism of Graphs

Definition

A property preserved by isomorphism of graphs is called a graph invariant property.

Example

The number of vertices, the number of edges and the degrees of the vertices are graph invariant properties.

Isomorphism of Graphs

Definition

A property preserved by isomorphism of graphs is called a graph invariant property.

Example

The number of vertices, the number of edges and the degrees of the vertices are graph invariant properties.

Remark

We can prove that two graphs are not isomorphic if we can find a graph invariant property that only one of the two graphs has.

Isomorphism of Graphs

Example
Are the following graphs isomorphic?

H

Isomorphism of Graphs

Example

Are the following graphs isomorphic?

G

Solution

No. The graph H has a vertice of degree 1 but the graph G have no vertices of degree 1 .

Isomorphism of Graphs

Definition

The complementary graph \bar{G} of a simple graph G has the same vertices as G. Two (different) vertices are adjacent in \bar{G} if and only if they are not adjacent in G.

Example
Whiteboard.

Isomorphism of Graphs

Definition

A simple graph G is called self-complementary if G and \bar{G} are isomorphic.

Isomorphism of Graphs

Definition

A simple graph G is called self-complementary if G and \bar{G} are isomorphic.
Problem 50 (p. 529)
Is the given graph
self-complementary?

Isomorphism of Graphs

Definition

A simple graph G is called self-complementary if G and \bar{G} are isomorphic.

Problem 50 (p. 529)
Is the given graph self-complementary?

Yes! The complementary graph is given by the figure.

The isomorphism is $f(a)=c, f(b)=d$, $f(c)=b$ and $f(d)=a$.

Isomorphism of Graphs

Definition

The degree sequence of a graph is the sequence of the degrees of the vertices of the graph in non-increasing order.

Example

For the graph in the figure, the degree sequence is $4,4,4,3,2,1,0$.

Isomorphism of Graphs

Problem 69 (p. 530)
A counter-example for a purported isomorphism test is a pair of nonisomorphic graphs that the test fails to show that they are not isomorphic.

Find a counter-example for the test that checks the degree sequence in two graphs to make sure they agree.

Isomorphism of Graphs

Solution

The degree sequence of both graphs is $3,2,2,1,1,1$ but they are not isomorphic. In graph G, the vertice b has degree 3 and it is adjacent to two vertices of degree 2 and one vertice of degree 1 . The graph H has no vertice with these properties.

G
H

Isomorphism of Graphs

Comparison of several time complexity functions

$f(n)$	10	50	100
$\log n$	2.3 sec	3.9 sec	4.6 sec
n	10 sec	50 sec	1.7 min
n^{2}	1.7 min	41.7 min	2.8 h
2^{n}	17.1 min	358.001 c	$4 \times 10^{20} \mathrm{c}$
3^{n}	16.4 h	$2.3 \times 10^{14} \mathrm{c}$	$1.6 \times 10^{38} \mathrm{c}$
$n!$	42 d	$9.7 \times 10^{54} \mathrm{c}$	$3 \times 10^{148} \mathrm{c}$

Isomorphism of Graphs

Algorithms for graph isomorphism
The best algorithm known has time complexity of $2^{O(\sqrt{n \log n})}$, where n is the number of vertices (Johnson 2005).

Isomorphism of Graphs

Algorithms for graph isomorphism
The best algorithm known has time complexity of $2^{O(\sqrt{n \log n})}$, where n is the number of vertices (Johnson 2005).

vertices	10	100	1000	10000
$2^{\sqrt{n \log n}}$	27.8 sec	33.4 d	$3.3 \times 10^{15} \mathrm{c}$	$7.3 \times 10^{81} \mathrm{c}$

References

Johnson, D. S. (2005). The NP-Completeness Column. ACM Transactions on Algorithms 1.1, pp. 160-176. DOI: 10.1145/1077464.1077476 (cit. on pp. 61, 62).
Rosen, K. H. (2004). Matemática Discreta y sus Aplicaciones. 5th ed. Translated by José Manuel Pérez Morales and others. McGraw-Hill (cit. on p. 2).

