CM0246 Discrete Structures Relations and Their Properties

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Relations

Recall the definition of Cartesian product
Let A and B be sets. The Cartesian product of A and B is

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Example
Let $A=\{a, b\}$ and $B=\{1,2\}$. Then

$$
A \times B=\{(a, 1),(a, 2),(b, 1),(b, 2)\} .
$$

Relations

Definition
Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

Relations

Definition
Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

Example (trivial relations)
$R=\emptyset$ and $R=A \times B$ are relations from A to B.

Relations

Definition
Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.
Example (trivial relations)
$R=\emptyset$ and $R=A \times B$ are relations from A to B.
Example
See whiteboard.

Relations

Definition

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

Example (trivial relations)

$R=\emptyset$ and $R=A \times B$ are relations from A to B.

Example

See whiteboard.
Notation
We shall use $(a, b) \in R$ and $a R b$.
The slides for the 6th ed. of Rosen's textbook use $\langle a, b\rangle$.

Relations

Relations and functions
The functions are relations with additional constraints.

Relations

Definition
A relation on a set A is a relation from A to A.

Relations

Definition

A relation on a set A is a relation from A to A.

Example

Some relations on \mathbb{Z} :

$$
\begin{aligned}
R_{1} & =\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \leq b\}, \\
R_{2} & =\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a>b\}, \\
R_{3} & =\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a=b \vee a=-b\}, \\
R_{4} & =\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a=b\}, \\
R_{5} & =\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a=b+1\}, \\
R_{6} & =\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a+b \leq 3\} .
\end{aligned}
$$

Properties of Relations

Definition

Let R be a relation on a set A. The relation R is reflexive iff $\forall x(x R x)$, symmetric iff $\forall x \forall y(x R y \rightarrow y R x)$, antisymmetric iff $\forall x \forall y((x R y \wedge y R x) \rightarrow x=y)$ and
transitive iff $\forall x \forall y \forall z((x R y \wedge y R z) \rightarrow x R z)$.

Properties of Relations

Example
See slides § 8.1, p. 5 for the 6th ed. of Rosen's textbook.

Combing Relations

See slides § 8.1, pp. 6-8 for the 6th ed. of Rosen's textbook.

Combing Relations

Definition

Let R be a relation from A to B and let S be a relation from B to C.
The composition of S with R, denoted $S \circ R$, is the relation from A to C where if $(a, b) \in R$ and $(b, c) \in S$ then $(a, c) \in S \circ R$.

Combing Relations

Example (composition of relations)
Let $A=\{1,2,3\}, B=\{1,2,3,4\}$ and $C=\{0,1,2\}$.
Let R and S be the relations from A to B and B to C, respectively, given by

$$
\begin{aligned}
R & =\{(1,1),(1,4),(2,3),(3,1),(3,4)\} \\
S & =\{(1,0),(2,0),(3,1),(3,2),(4,1)\}
\end{aligned}
$$

then $S \circ R$ is the relation from A to C, given by

$$
S \circ R=\{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\} .
$$

Combing Relations

Problem 31 (p. 448)

Let R be the relation on the set of people consisting of pairs (a, b), where a is a parent of b. Let S be the relation on the set of people consisting of pairs (a, b), where a and b are siblings (brothers or sisters).

Combing Relations

Problem 31 (p. 448)

Let R be the relation on the set of people consisting of pairs (a, b), where a is a parent of b. Let S be the relation on the set of people consisting of pairs (a, b), where a and b are siblings (brothers or sisters).

What are $S \circ R$ and $R \circ S$?

Combing Relations

Problem 31 (p. 448)

Let R be the relation on the set of people consisting of pairs (a, b), where a is a parent of b. Let S be the relation on the set of people consisting of pairs (a, b), where a and b are siblings (brothers or sisters).

What are $S \circ R$ and $R \circ S$?

- $(a, b) \in S \circ R$ if exists c such that $(a, c) \in R$ (a is parent of c) and $(c, b) \in S(c$ is sibling of $b)$, that is
$S \circ R=\{(a, b) \mid a$ is a parent of b and b has a sibling $\}$.

Combing Relations

Problem 31 (p. 448)

Let R be the relation on the set of people consisting of pairs (a, b), where a is a parent of b. Let S be the relation on the set of people consisting of pairs (a, b), where a and b are siblings (brothers or sisters).

What are $S \circ R$ and $R \circ S$?

- $(a, b) \in S \circ R$ if exists c such that $(a, c) \in R(a$ is parent of $c)$ and $(c, b) \in S(c$ is sibling of $b)$, that is

$$
S \circ R=\{(a, b) \mid a \text { is a parent of } b \text { and } b \text { has a sibling }\} .
$$

- $(a, b) \in R \circ S$ if exists c such $(a, c) \in S$ (a is sibling of c) and $(c, b) \in R(c$ is parent of $b)$, that is

$$
R \circ S=\{(a, b) \mid a \text { is an aunt or uncle of } b\} .
$$

Combing Relations

Definition

Let R be a relation on the set A. The powers R^{n}, for $n \in \mathbb{Z}^{+}$are defined recursively by

$$
\begin{aligned}
R^{1} & =R, \\
R^{n+1} & =R^{n} \circ R .
\end{aligned}
$$

Combing Relations

Definition

Let R be a relation on the set A. The powers R^{n}, for $n \in \mathbb{Z}^{+}$are defined recursively by

$$
\begin{aligned}
R^{1} & =R, \\
R^{n+1} & =R^{n} \circ R .
\end{aligned}
$$

Example

See slides § 8.1, pp. 9-10 for the 6th ed. of Rosen's textbook.

Combing Relations

Theorem 1 (p. 446)
Let R be a relation on a set A. The relation R is transitive iff $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$.

Proved on next slides

Combing Relations

Proof of \Rightarrow (if R is transitive implies $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$). By induction on $n \in \mathbb{Z}^{+}$.

Combing Relations

Proof of \Rightarrow (if R is transitive implies $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$).
By induction on $n \in \mathbb{Z}^{+}$.

1. $P(n)$: if R is transitive implies $R^{n} \subseteq R$.

Combing Relations

Proof of \Rightarrow (if R is transitive implies $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$).
By induction on $n \in \mathbb{Z}^{+}$.

1. $P(n)$: if R is transitive implies $R^{n} \subseteq R$.
2. Basis step $P(1): R^{1}=R \subseteq R$

Combing Relations

Proof of \Rightarrow (if R is transitive implies $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$).
By induction on $n \in \mathbb{Z}^{+}$.

1. $P(n)$: if R is transitive implies $R^{n} \subseteq R$.
2. Basis step $P(1): R^{1}=R \subseteq R$
3. Inductive step:

Inductive hypothesis $P(k)$: if R is transitive implies $R^{k} \subseteq R$

Combing Relations

Proof of \Rightarrow (if R is transitive implies $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$).
By induction on $n \in \mathbb{Z}^{+}$.

1. $P(n)$: if R is transitive implies $R^{n} \subseteq R$.
2. Basis step $P(1): R^{1}=R \subseteq R$
3. Inductive step:

Inductive hypothesis $P(k)$: if R is transitive implies $R^{k} \subseteq R$ Let's prove $P(k+1)$:

Combing Relations

Proof of \Rightarrow (if R is transitive implies $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$).
By induction on $n \in \mathbb{Z}^{+}$.

1. $P(n)$: if R is transitive implies $R^{n} \subseteq R$.
2. Basis step $P(1): R^{1}=R \subseteq R$
3. Inductive step:

Inductive hypothesis $P(k)$: if R is transitive implies $R^{k} \subseteq R$
Let's prove $P(k+1)$:
3.1 Let $(a, b) \in R^{k+1}$.

Combing Relations

Proof of \Rightarrow (if R is transitive implies $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$).
By induction on $n \in \mathbb{Z}^{+}$.

1. $P(n)$: if R is transitive implies $R^{n} \subseteq R$.
2. Basis step $P(1): R^{1}=R \subseteq R$
3. Inductive step:

Inductive hypothesis $P(k)$: if R is transitive implies $R^{k} \subseteq R$
Let's prove $P(k+1)$:
3.1 Let $(a, b) \in R^{k+1}$.
3.2 Exists $x \in A$ such that $(a, x) \in R^{k}$ and $(x, b) \in R$ (definition of o).

Combing Relations

Proof of \Rightarrow (if R is transitive implies $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$).
By induction on $n \in \mathbb{Z}^{+}$.

1. $P(n)$: if R is transitive implies $R^{n} \subseteq R$.
2. Basis step $P(1): R^{1}=R \subseteq R$
3. Inductive step:

Inductive hypothesis $P(k)$: if R is transitive implies $R^{k} \subseteq R$
Let's prove $P(k+1)$:
3.1 Let $(a, b) \in R^{k+1}$.
3.2 Exists $x \in A$ such that $(a, x) \in R^{k}$ and $(x, b) \in R$ (definition of o).
$3.3(a, x) \in R(\mathrm{IH})$.

Combing Relations

Proof of \Rightarrow (if R is transitive implies $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$).
By induction on $n \in \mathbb{Z}^{+}$.

1. $P(n)$: if R is transitive implies $R^{n} \subseteq R$.
2. Basis step $P(1): R^{1}=R \subseteq R$
3. Inductive step:

Inductive hypothesis $P(k)$: if R is transitive implies $R^{k} \subseteq R$
Let's prove $P(k+1)$:
3.1 Let $(a, b) \in R^{k+1}$.
3.2 Exists $x \in A$ such that $(a, x) \in R^{k}$ and $(x, b) \in R$ (definition of o).
$3.3(a, x) \in R(\mathrm{IH})$.
3.4 If $(a, x) \in R$ and $(x, b) \in R$ then $(a, b) \in R$ (R is transitive).

Combing Relations

Proof of \Rightarrow (if R is transitive implies $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$).
By induction on $n \in \mathbb{Z}^{+}$.

1. $P(n)$: if R is transitive implies $R^{n} \subseteq R$.
2. Basis step $P(1): R^{1}=R \subseteq R$
3. Inductive step:

Inductive hypothesis $P(k)$: if R is transitive implies $R^{k} \subseteq R$
Let's prove $P(k+1)$:
3.1 Let $(a, b) \in R^{k+1}$.
3.2 Exists $x \in A$ such that $(a, x) \in R^{k}$ and $(x, b) \in R$ (definition of o).
$3.3(a, x) \in R(\mathrm{IH})$.
3.4 If $(a, x) \in R$ and $(x, b) \in R$ then $(a, b) \in R$ (R is transitive).
$3.5 R^{k+1} \subseteq R$.

Continued on next slide

Combing Relations

Proof of \Leftarrow (if $R^{n} \subseteq R$ for $n \in \mathbb{Z}^{+}$implies R is transitive).
1 Suppose that $(a, b) \in R$ and $(b, c) \in R$.
$2(a, c) \in R^{2}$.
(def. of R^{2})
$3 \quad(a, c) \in R$.
$\left(R^{2} \subseteq R\right)$
4 Therefore, R is transitive.

Inverse and Complementary Relations

Definition

Let R be a relation from A to B. The inverse relation from B to A, denoted by R^{-1}, is the set of ordered pairs

$$
R^{-1}=\{(b, a) \in B \times A \mid(a, b) \in R\}
$$

Inverse and Complementary Relations

Definition

Let R be a relation from A to B. The complementary relation from A to B, denoted by \bar{R}, is the set of ordered pairs

$$
\bar{R}=\{(a, b) \in A \times B \mid(a, b) \notin R\} .
$$

References

Rosen, K. H. (2004). Matemática Discreta y sus Aplicaciones. 5th ed. Translated by José Manuel Pérez Morales and others. McGraw-Hill (cit. on p. 2).

