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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, sections,
and theorems on these slides correspond to the numbers assigned in the
textbook (Rosen 2004).
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Introduction

Subjects
Recursively defined functions from the natural numbers

Inductively defined sets and structures
Recursively defined functions from inductively defined sets and
structures
Structural induction

Terminological note
We talk about ‘recursively’ defined functions and ‘inductively’ defined
sets/structures. Both terms are used interchangeably in the textbook.
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Introduction

Recursion
‘Sometimes it is difficult to define an object explicitly. However, it may be
easy to define this object in terms of itself. This process is called recur-
sion.’ (Rosen 2012, 7th ed. p. 344)
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Recursively Defined Functions from the Natural Numbers

Recursively defined functions from the natural numbers
Let A be a set. A function f : N → A is recursively defined if:

Basis step: We define the function on f(0).

Recursive step: We give a rule for f(n) from the value of f on
smaller natural numbers.
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Recursively Defined Functions from the Natural Numbers

Example

f : N → N
f(0) = 3,

f(n + 1) = 2f(n) + 3.

Example (the factorial function)

! : N → N
0! = 1,

(n + 1)! = (n + 1)n!.
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Recursively Defined Functions from the Natural Numbers

Example

Give a recursive definition of
n∑

k=0
ak.

Solution

0∑
k=0

ak = a0,

n+1∑
k=0

ak =
(

n∑
k=0

ak

)
+ an+1.
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Recursively Defined Functions from the Natural Numbers

Definition
Let A be a set. A function f : N → A is well defined if for every natural
number, the value of the function at this number is determined in an un-
ambiguous way.
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Recursively Defined Functions from the Natural Numbers

Problem 56 (p. 254)
Use mathematical induction to prove that a function f defined by specify-
ing f(0) and a rule for obtaining f(n + 1) from f(n) is well defined.

Scheme
The function f : N → A is defined by

f(0) = c ∈ A,

f(n + 1) = e[f(n)].

Proof
Proof by mathematical induction (see whiteboard).
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Recursively Defined Functions from the Natural Numbers

Example (Fibonacci numbers)

f : N → N
f(0) = 0,

f(1) = 1,

f(n + 2) = f(n − 1) + f(n − 2).
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Subjects

Recursively defined functions from the natural numbers
Inductively defined sets and structures
Recursively defined functions from inductively defined sets and
structures
Structural induction
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Inductively Defined Sets and Structures

Example (the natural numbers)
See whiteboard.

Definition
An alphabet is a finite, non-empty set of symbols.

Example

Σ1 = {0, 1},

Σ2 = {a, b, . . . , z},

Σ3 = { x | x is an Unicode codepoint } .
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Inductively Defined Sets and Structures

Definition
A string is a finite sequence of symbols of an alphabet. The empty string
is denoted λ.

Example
See whiteboard.

Example (inductive definition of strings)
See whiteboard.

Remark: See the correction to the textbook definition in course’s website.
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Inductively Defined Sets and Structures

Example (well-formed propositional logic formulae)
Basis step: T, F and p (propositional variable) are well-formed
formulae.
Inductive step: If E and F are well-formed formulae, then (¬E), and
(E ∗ F ) with ∗ ∈ {∧, ∨, →}, are well-formed formulae.
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Inductively Defined Sets and Structures

Inductively defined sets and structures
A set/structure is inductively defined if:

Basis step: We define an initial collection of elements in the
set/structure.

Inductive step: We give rules for forming new elements in the
set/structure from those already known to be in the set/structure.
Exclusion rule: We specific that all the elements in the set/structure
are those elements specified in the basis step or generated by
applications of the inductive step.

Remark
The exclusion rule is tacitly assumed in the slides.
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Subjects
Recursively defined functions from the natural numbers
Inductively defined sets and structures
Recursively defined functions from inductively defined sets and
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Recursively Defined Functions from Inductively Defined
Sets and Structures

Example (concatenation of strings)
See whiteboard.

Example (length of strings)
See whiteboard.
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Recursively Defined Functions from Inductively Defined
Sets and Structures

Recursively defined functions from inductively defined sets and structures
A function from an inductively defined set/structure is recursively defined if:

Basis step: We define the function on the initial collection of elements
in the set/structure.

Recursive step: We give rules for defining the value of the function on
a new element from those values of the function on the elements of
the new element.

Remark
Note that the exclusion rule is not used in the definition of recursive
functions.
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Structural Induction
Structural induction is used for proving properties on inductively defined
sets/structures.
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Structural Induction

Example
Let Σ be an alphabet and w ∈ Σ∗ be a string. Prove that λw = w.

Proof by structural induction on w

Basis step: Let w = λ. Then λλ = λ by the basis step of (·).

Inductive step: Let w = w′x where w′ ∈ Σ∗ and x ∈ Σ.

Inductive hypothesis (IH): λw′ = w′.

λw = λ · w′x (by def. of w)
= (λ · w′)x (by the inductive step of (·))
= w′x (by IH)
= w (by def. of w)
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Structural Induction

Exercise
Let Σ be an alphabet and w, w′ ∈ Σ∗ be two strings. Prove that l(ww′) =
l(w) + l(w′).
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Structural Induction

Example (left and right parentheses)
Prove that every well-formed propositional formula contains an equal num-
ber of left and right parentheses.

Proof by structural induction on the set of well-formed propositional
formulae

P (α): lα = rα, where lα/rα is the number of left/right parentheses
in α.
Basis step: T, F and p (propositional variable) have no parentheses,
so lα = rα = 0, for α ∈ {T, F, p}.

Continued on next slide
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Structural Induction

Proof (continuation)
Inductive step

a) Case α = (¬E):

lα = 1 + lE (def. of α)
= 1 + rE (IH in E)
= rα (def. of α)

b) Case α = (E ∗ F ):

lα = 1 + lE + lF (def. of α)
= 1 + rE + rF (IH in E and F )
= rα (def. of α)
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Structural Induction

Structural induction
Let P be a propositional function on an inductively defined set/structure.

To prove that P is true for all the elements on the set/structure, we must
make two proofs:

Basis step: Prove P for all elements specified in the basis step of the
inductive definition of the set/structure.

Inductive step: Prove that if P is true for each of the elements used
to construct new elements in the inductive step of the definition, the
result holds for these new elements.
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Structural Induction

Problem 27(c) (p. 252)
Let S be the subset of the set of ordered pairs of integers inductively
defined by

Basis step: (0, 0) ∈ S.
Inductive step: If (a, b) ∈ S, then

a) (a, b + 1) ∈ S,
b) (a + 1, b + 1) ∈ S and
c) (a + 2, b + 1) ∈ S.

Use structural induction to show that a ≤ 2b whenever (a, b) ∈ S.

Proved on next slide
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Structural Induction

Proof by structural induction on S

P ((a, b)): If (a, b) ∈ S then a ≤ 2b.

Basis step P ((0, 0)): 0 ≤ 2 · 0
Inductive step:

a) P ((a, b + 1)):

a ≤ 2b (IH P ((a, b)))
≤ 2b + 2 (arithmetic)
≤ 2(b + 1) (arithmetic)

Continued on next slide
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Structural Induction

Inductive step (continuation):
b) P ((a + 1, b + 1)):

a ≤ 2b (IH P ((a, b)))
a + 1 ≤ 2b + 2 (arithmetic)

≤ 2(b + 1) (arithmetic)

c) P ((a + 2, b + 1)):

a ≤ 2b (IH P ((a, b)))
a + 2 ≤ 2b + 2 (arithmetic)

≤ 2(b + 1) (arithmetic)
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