CM0246 Discrete Structures Recursive Definitions and Structural Induction

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Subjects

• Recursively defined functions from the natural numbers

- Recursively defined functions from the natural numbers
- Inductively defined sets and structures

- Recursively defined functions from the natural numbers
- Inductively defined sets and structures
- Recursively defined functions from inductively defined sets and structures

- Recursively defined functions from the natural numbers
- Inductively defined sets and structures
- Recursively defined functions from inductively defined sets and structures
- Structural induction

Subjects

- Recursively defined functions from the natural numbers
- Inductively defined sets and structures
- Recursively defined functions from inductively defined sets and structures
- Structural induction

Terminological note

We talk about 'recursively' defined functions and 'inductively' defined sets/structures. Both terms are used interchangeably in the textbook.

Recursion

'Sometimes it is difficult to define an object explicitly. However, it may be easy to define this object in terms of itself. This process is called **recursion**.' (Rosen 2012, 7th ed. p. 344)

Recursively defined functions from the natural numbers

Let A be a set. A function $f:\mathbb{N}\to A$ is recursively defined if:

• Basis step: We define the function on f(0).

Recursively defined functions from the natural numbers

Let A be a set. A function $f:\mathbb{N}\to A$ is recursively defined if:

- Basis step: We define the function on f(0).
- Recursive step: We give a rule for f(n) from the value of f on smaller natural numbers.

Example

$$\begin{split} f: \mathbb{N} &\to \mathbb{N} \\ f(0) &= 3, \\ f(n+1) &= 2f(n) + 3. \end{split}$$

Example

$$\begin{split} f: \mathbb{N} &\to \mathbb{N} \\ f(0) &= 3, \\ f(n+1) &= 2f(n) + 3. \end{split}$$

Example (the factorial function)

$$!: \mathbb{N} \to \mathbb{N}$$
$$0! = 1,$$
$$(n+1)! = (n+1)n!.$$

Example

Give a recursive definition of $\sum_{k=0}^{n} a_k$.

Example

Give a recursive definition of
$$\sum_{k=0}^{n} a_k$$
.

Solution

$$\sum_{k=0}^{n} a_k = a_0,$$
$$\sum_{k=0}^{n+1} a_k = \left(\sum_{k=0}^{n} a_k\right) + a_{n+1}.$$

Definition

Let A be a set. A function $f: \mathbb{N} \to A$ is **well defined** if for every natural number, the value of the function at this number is determined in an unambiguous way.

Problem 56 (p. 254)

Use mathematical induction to prove that a function f defined by specifying f(0) and a rule for obtaining f(n+1) from f(n) is well defined.

Problem 56 (p. 254)

Use mathematical induction to prove that a function f defined by specifying f(0) and a rule for obtaining f(n+1) from f(n) is well defined.

Scheme

The function $f:\mathbb{N}\to A$ is defined by

 $f(0) = c \in A,$ f(n+1) = e[f(n)].

Problem 56 (p. 254)

Use mathematical induction to prove that a function f defined by specifying f(0) and a rule for obtaining f(n+1) from f(n) is well defined.

Scheme

The function $f:\mathbb{N}\rightarrow A$ is defined by

$$f(0) = c \in A,$$

$$f(n+1) = e[f(n)].$$

Proof

Proof by mathematical induction (see whiteboard).

Example (Fibonacci numbers)

$$f: \mathbb{N} \to \mathbb{N}$$

$$f(0) = 0,$$

$$f(1) = 1,$$

$$f(n+2) = f(n-1) + f(n-2).$$

- Recursively defined functions from the natural numbers
- Inductively defined sets and structures
- Recursively defined functions from inductively defined sets and structures
- Structural induction

Example (the natural numbers) See whiteboard.

Example (the natural numbers) See whiteboard.

Definition

An alphabet is a finite, non-empty set of symbols.

Example

$$\begin{split} \Sigma_1 &= \{0, 1\}, \\ \Sigma_2 &= \{a, b, \dots, z\}, \\ \Sigma_3 &= \{x \mid x \text{ is an Unicode codepoint } \}. \end{split}$$

Definition

A **string** is a finite sequence of symbols of an alphabet. The empty string is denoted λ .

Example

See whiteboard.

Definition

A **string** is a finite sequence of symbols of an alphabet. The empty string is denoted λ .

Example

See whiteboard.

Example (inductive definition of strings) See whiteboard.

Definition

A **string** is a finite sequence of symbols of an alphabet. The empty string is denoted λ .

Example

See whiteboard.

Example (inductive definition of strings)

See whiteboard.

Remark: See the correction to the textbook definition in course's website.

Example (well-formed propositional logic formulae)

- \bullet Basis step: T, F and p (propositional variable) are well-formed formulae.
- Inductive step: If E and F are well-formed formulae, then $(\neg E)$, and (E * F) with $* \in \{\land, \lor, \rightarrow\}$, are well-formed formulae.

Inductively defined sets and structures

A set/structure is inductively defined if:

• Basis step: We define an initial collection of elements in the set/structure.

Inductively defined sets and structures

A set/structure is inductively defined if:

- Basis step: We define an initial collection of elements in the set/structure.
- Inductive step: We give rules for forming new elements in the set/structure from those already known to be in the set/structure.

Inductively defined sets and structures

A set/structure is inductively defined if:

- Basis step: We define an initial collection of elements in the set/structure.
- Inductive step: We give rules for forming new elements in the set/structure from those already known to be in the set/structure.
- Exclusion rule: We specific that all the elements in the set/structure are those elements specified in the basis step or generated by applications of the inductive step.

Inductively defined sets and structures

A set/structure is inductively defined if:

- Basis step: We define an initial collection of elements in the set/structure.
- Inductive step: We give rules for forming new elements in the set/structure from those already known to be in the set/structure.
- Exclusion rule: We specific that all the elements in the set/structure are those elements specified in the basis step or generated by applications of the inductive step.

Remark

The exclusion rule is tacitly assumed in the slides.

- Recursively defined functions from the natural numbers
- Inductively defined sets and structures
- Recursively defined functions from inductively defined sets and structures
- Structural induction

Recursively Defined Functions from Inductively Defined Sets and Structures

Example (concatenation of strings) See whiteboard.

Recursively Defined Functions from Inductively Defined Sets and Structures

Example (concatenation of strings) See whiteboard.

Example (length of strings) See whiteboard.

Recursively Defined Functions from Inductively Defined Sets and Structures

Recursively defined functions from inductively defined sets and structures

A function from an inductively defined set/structure is recursively defined if:

• Basis step: We define the function on the initial collection of elements in the set/structure.

Recursively Defined Functions from Inductively Defined Sets and Structures

Recursively defined functions from inductively defined sets and structures

A function from an inductively defined set/structure is recursively defined if:

- Basis step: We define the function on the initial collection of elements in the set/structure.
- Recursive step: We give rules for defining the value of the function on a new element from those values of the function on the elements of the new element.

Recursively Defined Functions from Inductively Defined Sets and Structures

Recursively defined functions from inductively defined sets and structures

A function from an inductively defined set/structure is recursively defined if:

- Basis step: We define the function on the initial collection of elements in the set/structure.
- Recursive step: We give rules for defining the value of the function on a new element from those values of the function on the elements of the new element.

Remark

Note that the exclusion rule is not used in the definition of recursive functions.

Subjects

- Recursively defined functions from the natural numbers
- Inductively defined sets and structures
- Recursively defined functions from inductively defined sets and structures
- Structural induction

Structural induction is used for proving properties on inductively defined sets/structures.

Example

Let Σ be an alphabet and $w \in \Sigma^*$ be a string. Prove that $\lambda w = w$.

Example

Let Σ be an alphabet and $w \in \Sigma^*$ be a string. Prove that $\lambda w = w$.

Proof by structural induction on \boldsymbol{w}

• Basis step: Let $w = \lambda$. Then $\lambda \lambda = \lambda$ by the basis step of (\cdot) .

Example

Let Σ be an alphabet and $w \in \Sigma^*$ be a string. Prove that $\lambda w = w$.

Proof by structural induction on \boldsymbol{w}

- Basis step: Let $w = \lambda$. Then $\lambda \lambda = \lambda$ by the basis step of (\cdot) .
- Inductive step: Let w = w'x where $w' \in \Sigma^*$ and $x \in \Sigma$.

Inductive hypothesis (IH): $\lambda w' = w'$.

$$\begin{split} \lambda w &= \lambda \cdot w' x & \text{(by def. of } w) \\ &= (\lambda \cdot w') x & \text{(by the inductive step of } (\cdot)) \\ &= w' x & \text{(by IH)} \\ &= w & \text{(by def. of } w) \end{split}$$

Exercise

Let Σ be an alphabet and $w,w'\in \Sigma^*$ be two strings. Prove that l(ww')=l(w)+l(w').

Example (left and right parentheses)

Prove that every well-formed propositional formula contains an equal number of left and right parentheses.

Example (left and right parentheses)

Prove that every well-formed propositional formula contains an equal number of left and right parentheses.

Proof by structural induction on the set of well-formed propositional formulae

- $P(\alpha)$: $l_{\alpha} = r_{\alpha}$, where l_{α}/r_{α} is the number of left/right parentheses in α .
- Basis step: T, F and p (propositional variable) have no parentheses, so $l_{\alpha} = r_{\alpha} = 0$, for $\alpha \in \{T, F, p\}$.

Continued on next slide

Proof (continuation)

• Inductive step

a) Case
$$\alpha = (\neg E)$$
:

 $\begin{aligned} l_{\alpha} &= 1 + l_E & (\text{def. of } \alpha) \\ &= 1 + r_E & (\text{IH in } E) \\ &= r_{\alpha} & (\text{def. of } \alpha) \end{aligned}$

b) Case
$$\alpha = (E * F)$$
:
 $l_{\alpha} = 1 + l_E + l_F$ (def. of α)
 $= 1 + r_E + r_F$ (IH in *E* and *F*)
 $= r_{\alpha}$ (def. of α)

Structural induction

Let ${\cal P}$ be a propositional function on an inductively defined set/structure.

To prove that ${\cal P}$ is true for all the elements on the set/structure, we must make two proofs:

• Basis step: Prove *P* for all elements specified in the basis step of the inductive definition of the set/structure.

Let ${\cal P}$ be a propositional function on an inductively defined set/structure.

To prove that ${\cal P}$ is true for all the elements on the set/structure, we must make two proofs:

- Basis step: Prove *P* for all elements specified in the basis step of the inductive definition of the set/structure.
- Inductive step: Prove that if *P* is true for each of the elements used to construct new elements in the inductive step of the definition, the result holds for these new elements.

Problem 27(c) (p. 252)

Let ${\cal S}$ be the subset of the set of ordered pairs of integers inductively defined by

- Basis step: $(0,0) \in S$.
- Inductive step: If $(a,b) \in S$, then

a)
$$(a, b+1) \in S$$
,
b) $(a+1, b+1) \in S$ and
c) $(a+2, b+1) \in S$.

Use structural induction to show that $a \leq 2b$ whenever $(a, b) \in S$.

Proved on next slide

Proof by structural induction on ${\boldsymbol {\cal S}}$

• P((a,b)): If $(a,b) \in S$ then $a \leq 2b$.

Proof by structural induction on ${\boldsymbol {\cal S}}$

- P((a,b)): If $(a,b) \in S$ then $a \leq 2b$.
- Basis step P((0,0)): $0 \le 2 \cdot 0$

Proof by structural induction on ${\boldsymbol {\cal S}}$

- P((a,b)): If $(a,b) \in S$ then $a \leq 2b$.
- Basis step P((0,0)): $0 \le 2 \cdot 0$
- Inductive step:
 - a) P((a, b + 1)):
 - $\begin{array}{ll} a \leq 2b & (\mathsf{IH}\ P((a,b))) \\ \leq 2b+2 & (\mathsf{arithmetic}) \\ \leq 2(b+1) & (\mathsf{arithmetic}) \end{array}$

Continued on next slide

Inductive step (continuation):
b) P((a+1,b+1)):

$$\begin{aligned} a &\leq 2b & (\mathsf{IH}\ P((a,b))) \\ a+1 &\leq 2b+2 & (\mathsf{arithmetic}) \\ &\leq 2(b+1) & (\mathsf{arithmetic}) \end{aligned}$$

Inductive step (continuation):
b) P((a+1,b+1)):

$$\begin{aligned} a &\leq 2b & (\mathsf{IH}\ P((a,b))) \\ a+1 &\leq 2b+2 & (\mathsf{arithmetic}) \\ &\leq 2(b+1) & (\mathsf{arithmetic}) \end{aligned}$$

c)
$$P((a+2,b+1))$$
:
 $a \le 2b$ (IH $P((a,b))$)
 $a+2 \le 2b+2$ (arithmetic)
 $\le 2(b+1)$ (arithmetic)

References

Rosen, K. H. (2004). *Matemática Discreta y sus Aplicaciones*. 5th ed. Translated by José Manuel Pérez Morales and others. McGraw-Hill (cit. on p. 2).
(2012). Discrete Mathematics and Its Applications. 7th ed. McGraw-Hill (cit. on p. 8).