CM0246 Discrete Structures Partial Orders

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Partial Orders 2/68

We can use relations to order some or all the elements of a set.

Partial Orders 3/68

We can use relations to order some or all the elements of a set.

Example

Some order relations.

• The words in a dictionary

 $(a,b) \in R$ if a comes before b in the dictionary.

Partial Orders 4/68

We can use relations to order some or all the elements of a set.

Example

Some order relations.

• The words in a dictionary

 $(a,b) \in R$ if a comes before b in the dictionary.

• Academic genealogical descent

 $(a,b) \in R$ if a was the supervisor of the thesis of b.

Partial Orders 5/68

We can use relations to order some or all the elements of a set.

Example

Some order relations.

- The words in a dictionary
 - $(a,b) \in R$ if a comes before b in the dictionary.
- Academic genealogical descent
 - $(a,b) \in R$ if a was the supervisor of the thesis of b.
- Schedule projects
 - $(a,b) \in R$ if a is a task that must be completed before the task b begins.

Partial Orders 6/68

Definition

A relation on a set A is a (non-strict) partial order iff it is reflexive, antisymmetric and transitive.

Partial Orders 7/68

Definition

A relation on a set A is a (non-strict) partial order iff it is reflexive, antisymmetric and transitive.

Definition

Let R be a partial order on a set A, then (A,R) is called a **partially ordered** set (or **poset**).

Partial Orders 8/68

Definition

A relation on a set A is a (non-strict) partial order iff it is reflexive, antisymmetric and transitive.

Definition

Let R be a partial order on a set A, then (A,R) is called a **partially ordered** set (or **poset**).

Example

• (\mathbb{Z}, \leq) is a poset.

Partial Orders 9/68

Definition

A relation on a set A is a (non-strict) partial order iff it is reflexive, antisymmetric and transitive.

Definition

Let R be a partial order on a set A, then (A,R) is called a **partially ordered** set (or **poset**).

Example

- \bullet (\mathbb{Z}, \leq) is a poset.
- $(P(A), \subseteq)$ is a poset.

Partial Orders 10/68

Definition

Let $a,b\in\mathbb{Z}$ with $a\neq 0$. The **divisibility relation**, denoted by |, is defined by

$$a \mid b \stackrel{\mathsf{def}}{=} \exists c(b = ac).$$

If $a \mid b$, we say that a divides b.

Partial Orders 11/68

Definition

Let $a,b\in\mathbb{Z}$ with $a\neq 0$. The **divisibility relation**, denoted by |, is defined by

$$a \mid b \stackrel{\mathsf{def}}{=} \exists c(b = ac).$$

If $a \mid b$, we say that a divides b.

Example

Whiteboard.

Partial Orders 12/68

Definition

Let $a,b\in\mathbb{Z}$ with $a\neq 0$. The **divisibility relation**, denoted by |, is defined by

$$a \mid b \stackrel{\mathsf{def}}{=} \exists c(b = ac).$$

If $a \mid b$, we say that a divides b.

Example

Whiteboard.

Example

 \bullet $(\mathbb{Z}^+,|)$ is a poset.

Partial Orders 13/68

Definition

Let $a,b\in\mathbb{Z}$ with $a\neq 0$. The **divisibility relation**, denoted by |, is defined by

$$a \mid b \stackrel{\mathsf{def}}{=} \exists c(b = ac).$$

If $a \mid b$, we say that a divides b.

Example

Whiteboard.

Example

- \bullet $(\mathbb{Z}^+,|)$ is a poset.
- Is $(\mathbb{N}, |)$ a poset?

Partial Orders 14/68

Problem 6 (p. 492)

Let (A,R) be a poset. Prove that (S,R^{-1}) is also a poset, where R^{-1} is the inverse of R. The poset (S,R^{-1}) is called the dual of (S,R).

Partial Orders 15/68

Notation

 \preceq : Denotes an arbitrary partial order

$$a \prec b \stackrel{\mathsf{def}}{=} a \preceq b \land a \neq b$$

 (A, \preceq) : Denotes an arbitrary poset

Partial Orders 16/68

Comparable Elements

Definition

Let (A, \preceq) be a poset. The elements $a, b \in A$ are called **comparable** iff either $a \preceq b$ or $b \preceq a$.

Partial Orders 17/68

Comparable Elements

Definition

Let (A, \preceq) be a poset. The elements $a, b \in A$ are called **comparable** iff either $a \preceq b$ or $b \preceq a$.

Example

Whiteboard

Partial Orders 18/68

Definition

If (A, \preceq) is a poset and every two elements of A are comparable, A is called a **totally ordered set** (or **linearly ordered set**). The relation \preceq is called a **total order** (or a **linear order**).

Partial Orders 19/68

Definition

If (A, \preceq) is a poset and every two elements of A are comparable, A is called a **totally ordered set** (or **linearly ordered set**). The relation \preceq is called a **total order** (or a **linear order**).

Example

• (\mathbb{Z}, \leq) is a totally ordered set.

Partial Orders 20/68

Definition

If (A, \preceq) is a poset and every two elements of A are comparable, A is called a **totally ordered set** (or **linearly ordered set**). The relation \preceq is called a **total order** (or a **linear order**).

Example

- (\mathbb{Z}, \leq) is a totally ordered set.
- $(\mathbb{Z}^+, |)$ is a not totally order set.

Partial Orders 21/68

Definition

If (A, \preceq) is a poset and every two elements of A are comparable, A is called a **totally ordered set** (or **linearly ordered set**). The relation \preceq is called a **total order** (or a **linear order**).

Example

- (\mathbb{Z}, \leq) is a totally ordered set.
- $(\mathbb{Z}^+, |)$ is a not totally order set.
- Is $(P(A), \subseteq)$ a totally ordered set?

Partial Orders 22/68

Definition

An element $a \in A$ is the **least element** (minimo) of a poset (A, \preceq) iff $a \preceq b$ for all $b \in A$.

Partial Orders 23/68

Definition

An element $a \in A$ is the **least element** (minimo) of a poset (A, \preceq) iff $a \preceq b$ for all $b \in A$.

Definition

Let (A, \preceq) be a totally ordered set. The set (A, \preceq) is a **well-ordered set** iff every non-empty subset of A has a least element.

Partial Orders 24/68

Definition

An element $a \in A$ is the **least element** (minimo) of a poset (A, \preceq) iff $a \preceq b$ for all $b \in A$.

Definition

Let (A, \preceq) be a totally ordered set. The set (A, \preceq) is a **well-ordered set** iff every non-empty subset of A has a least element.

Example

• (\mathbb{N}, \leq) is a well-ordered set.

Partial Orders 25/68

Definition

An element $a \in A$ is the **least element** (minimo) of a poset (A, \preceq) iff $a \preceq b$ for all $b \in A$.

Definition

Let (A, \preceq) be a totally ordered set. The set (A, \preceq) is a **well-ordered set** iff every non-empty subset of A has a least element.

Example

- (\mathbb{N}, \leq) is a well-ordered set.
- (\mathbb{N}, \geq) is not a well-ordered set.

Partial Orders 26/68

Definition

An element $a \in A$ is the **least element** (minimo) of a poset (A, \preceq) iff $a \preceq b$ for all $b \in A$.

Definition

Let (A, \preceq) be a totally ordered set. The set (A, \preceq) is a **well-ordered set** iff every non-empty subset of A has a least element.

Example

- (\mathbb{N}, \leq) is a well-ordered set.
- (\mathbb{N}, \geq) is not a well-ordered set.
- Is (\mathbb{Z}, \leq) a well-ordered set?

Partial Orders 27/68

Example

Digraph for the relation $\{\,(a,b)\mid a\leq b\,\}$ on $\{1,2,3,4\}.$

See whiteboard.

Partial Orders 28/68

Constructing a Hasse diagram

- 1. Construct a digraph representation for the poset (A, \preceq) .
- 2. Remove these loops.
- 3. Remove all edges that must be in the partial ordering because of the presence of other edges and transitivity.
- 4. Arrange each edge so that its initial vertex is below its terminal vertex.

5. Remove all the arrows on the directed edges.

Partial Orders 29/68

Example

Hasse diagram for the poset $(\{a,b,c\},\subseteq)$.

Partial Orders 30/68

Exercise

Draw the Hasse diagram for the poset $(\{1,2,3,4,6,8,12\},|)$.

Partial Orders 31/68

Exercise

Draw the Hasse diagram for the poset $(\{1,2,3,4,6,8,12\},|)$.

Partial Orders 32/68

Example

Let \leq be relation on $\mathbb{Z} \times \mathbb{Z}$ defined by

$$(a_1, b_1) \preceq (a_2, b_2) \stackrel{\mathsf{def}}{=} a_1 < a_2 \text{ or } (a_1 = a_2 \text{ and } b_1 \leq b_2).$$

Partial Orders 33/68

Example

Let \leq be relation on $\mathbb{Z} \times \mathbb{Z}$ defined by

$$(a_1, b_1) \preceq (a_2, b_2) \stackrel{\mathsf{def}}{=} a_1 < a_2 \text{ or } (a_1 = a_2 \text{ and } b_1 \leq b_2).$$

• Is $(3,100) \leq (4,4)$?

Partial Orders 34/68

Example

Let \leq be relation on $\mathbb{Z} \times \mathbb{Z}$ defined by

$$(a_1, b_1) \leq (a_2, b_2) \stackrel{\mathsf{def}}{=} a_1 < a_2 \text{ or } (a_1 = a_2 \text{ and } b_1 \leq b_2).$$

- Is $(3,100) \leq (4,4)$?
- Is $(3,5) \leq (3,4)$?

Partial Orders 35/68

Example

Let \leq be relation on $\mathbb{Z} \times \mathbb{Z}$ defined by

$$(a_1, b_1) \leq (a_2, b_2) \stackrel{\mathsf{def}}{=} a_1 < a_2 \text{ or } (a_1 = a_2 \text{ and } b_1 \leq b_2).$$

- Is $(3,100) \leq (4,4)$?
- Is $(3,5) \leq (3,4)$?
- Is $(\mathbb{Z} \times \mathbb{Z}, \preceq)$ a poset?

Partial Orders 36/68

Example

Let \leq be relation on $\mathbb{Z} \times \mathbb{Z}$ defined by

$$(a_1, b_1) \leq (a_2, b_2) \stackrel{\mathsf{def}}{=} a_1 < a_2 \text{ or } (a_1 = a_2 \text{ and } b_1 \leq b_2).$$

- Is $(3,100) \leq (4,4)$?
- Is $(3,5) \leq (3,4)$?
- Is $(\mathbb{Z} \times \mathbb{Z}, \preceq)$ a poset?
- Is $(\mathbb{Z} \times \mathbb{Z}, \preceq)$ a totally ordered set?

Partial Orders 37/68

Definition

Let (A, \preceq_A) and (B, \preceq_B) be two posets. The **lexicographic ordering** \preceq on $A \times B$ is defined by:

$$(a_1, b_1) \preceq (a_2, b_2) \stackrel{\mathsf{def}}{=} a_1 \prec_A a_2 \text{ or } (a_1 = a_2 \text{ and } b_1 \preceq_B b_2).$$

Partial Orders 38/68

Definition

Let (A, \preceq_A) and (B, \preceq_B) be two posets. The **lexicographic ordering** \preceq on $A \times B$ is defined by:

$$(a_1, b_1) \preceq (a_2, b_2) \stackrel{\mathsf{def}}{=} a_1 \prec_A a_2 \text{ or } (a_1 = a_2 \text{ and } b_1 \preceq_B b_2).$$

Example

Previous example

Partial Orders 39/68

Definition

Let (A, \preceq_A) and (B, \preceq_B) be two posets. The **lexicographic ordering** \preceq on $A \times B$ is defined by:

$$(a_1, b_1) \preceq (a_2, b_2) \stackrel{\mathsf{def}}{=} a_1 \prec_A a_2 \text{ or } (a_1 = a_2 \text{ and } b_1 \preceq_B b_2).$$

Example

- Previous example
- Whiteboard

Partial Orders 40/68

Definition

Let $(A_1, \preceq_1), \ldots, (A_n, \preceq_n)$ be n posets. The **lexicographic ordering** \preceq on $A_1 \times \cdots \times A_n$ is defined by:

$$(a_1, \ldots, a_n) \leq (b_1, \ldots, b_n) \stackrel{\mathsf{def}}{=} (\exists m > 0) (\forall i < m) (a_i = b_i \land a_m \leq_m b_m),$$

that is, if one of the terms $a_m \leq_m b_m$ and all the preceding terms are equal.

Partial Orders 41/68

Example

Let Σ be an alphabet defined by $\Sigma=\{0,1\}$. The lexicographical ordering on $(\Sigma,\leq)\times(\Sigma,\leq)\times(\Sigma,\leq)$ is given by

Partial Orders 42/68

Definition

Let Σ^* be the set of all words (finite sequence of symbols) on an alphabet Σ , including the empty word denoted by λ .

A **lexicographic ordering** on Σ^* can be defined by: if the words are the same length, use the lexicographic ordering of n posets, else the shorter sequence should be padded at the end with enough "blanks" (a special symbol that is treated as smaller than every element of Σ .

Partial Orders 43/68

Example

Let Σ be an alphabet defined by $\Sigma=\{0,1\}.$ The lexicographical ordering on $\{\,w\in\Sigma^*\mid l(w)\le 3\,\}$ is given by

111 •	†111
110	110
11	11ϵ
101	101
100	100
10	10ϵ
1	$1\epsilon\epsilon$
011	011
010	010
01	01ϵ
001	001
000	000
00	00ϵ
0	066
λ	λεεε

Partial Orders 44/68

Definition

Let (A, \preceq_A) and (B, \preceq_B) be two posets. The **product order** \preceq on $A \times B$ is defined by:

$$(a_1,b_1) \preceq (a_2,b_2) \stackrel{\mathsf{def}}{=} a_1 \preceq_A a_2 \text{ and } b_1 \preceq_B b_2.$$

Partial Orders 45/68

Definition

Let (A, \preceq_A) and (B, \preceq_B) be two posets. The **product order** \preceq on $A \times B$ is defined by:

$$(a_1,b_1) \preceq (a_2,b_2) \stackrel{\mathsf{def}}{=} a_1 \preceq_A a_2 \text{ and } b_1 \preceq_B b_2.$$

Example

Whiteboard.

Partial Orders 46/68

Problem 33 (p. 494)

Prove that the product order of two posets is a poset.

Partial Orders 47/68

Problem 33 (p. 494)

Prove that the product order of two posets is a poset.

Proof.

Let (A, \preceq_A) and (B, \preceq_B) be two posets. We need to prove that $(A \times B, \preceq)$ is a poset, where \preceq is the product order on $A \times B$.

Partial Orders 48/68

Problem 33 (p. 494)

Prove that the product order of two posets is a poset.

Proof.

Let (A, \preceq_A) and (B, \preceq_B) be two posets. We need to prove that $(A \times B, \preceq)$ is a poset, where \prec is the product order on $A \times B$.

• Reflexivity: $(a,b) \leq (a,b)$, for all $a \in A$ and $b \in B$. Whiteboard.

Partial Orders 49/68

Problem 33 (p. 494)

Prove that the product order of two posets is a poset.

Proof.

Let (A, \preceq_A) and (B, \preceq_B) be two posets. We need to prove that $(A \times B, \preceq)$ is a poset, where \prec is the product order on $A \times B$.

- Reflexivity: $(a, b) \leq (a, b)$, for all $a \in A$ and $b \in B$. Whiteboard.
- Antisymmetry: If $(a_1,b_1) \preceq (a_2,b_2)$ and $(a_2,b_2) \preceq (a_1,b_1)$ then $(a_1,b_1)=(a_2,b_2)$, for all $a_1,a_2 \in A$ and $b_1,b_2 \in B$. Whiteboard.

Partial Orders 50/68

Problem 33 (p. 494)

Prove that the product order of two posets is a poset.

Proof.

Let (A, \preceq_A) and (B, \preceq_B) be two posets. We need to prove that $(A \times B, \preceq)$ is a poset, where \preceq is the product order on $A \times B$.

- Reflexivity: $(a,b) \leq (a,b)$, for all $a \in A$ and $b \in B$. Whiteboard.
- Antisymmetry: If $(a_1,b_1) \preceq (a_2,b_2)$ and $(a_2,b_2) \preceq (a_1,b_1)$ then $(a_1,b_1)=(a_2,b_2)$, for all $a_1,a_2 \in A$ and $b_1,b_2 \in B$. Whiteboard.
- Transitivity: If $(a_1,b_1) \preceq (a_2,b_2)$ and $(a_2,b_2) \preceq (a_3,b_3)$ then $(a_1,b_1) \preceq (a_3,b_3)$, for all $a_1,a_2,a_3 \in A$ and $b_1,b_2,b_3 \in B$. Whiteboard.

Partial Orders 51/68

Example

Hasse diagram for the product order of the posets $(\{1,2,3\},\leq)$ and $(\{1,2,3\},\geq).$

Partial Orders 52/68

Let (A, \preceq) be a poset.

Definition

An element $a \in A$ is the **greatest element** (máximo) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.

Partial Orders 53/68

Let (A, \preceq) be a poset.

Definition

An element $a \in A$ is the **greatest element** ($m\acute{a}ximo$) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.

Definition

An element $a \in A$ is the **least element** (mínimo) iff $a \leq b$ for all $b \in A$.

Partial Orders 54/68

Let (A, \preceq) be a poset.

Definition

An element $a \in A$ is the **greatest element** ($m\acute{a}ximo$) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.

Definition

An element $a \in A$ is the **least element** (mínimo) iff $a \leq b$ for all $b \in A$.

Definition

An element $a \in A$ is a **maximal** of (A, \preceq) if there is no $b \in A$ such that $a \prec b$.

Partial Orders 55/68

Let (A, \preceq) be a poset.

Definition

An element $a \in A$ is the **greatest element** (máximo) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.

Definition

An element $a \in A$ is the **least element** (mínimo) iff $a \leq b$ for all $b \in A$.

Definition

An element $a \in A$ is a **maximal** of (A, \preceq) if there is no $b \in A$ such that $a \prec b$.

Definition

An element $a \in A$ is a **minimal** (A, \preceq) if there is no $b \in A$ such that $b \prec a$.

Partial Orders 56/68

Example

Fig.	Least element	Greatest element	Maximals	Minimals
(a)	a		c, d, e	\overline{a}
(b)			d, e	a, b
(c)		d	d	a, b
(d)	a	d	d	a

Partial Orders 57/68

Let (S, \preceq) be a poset and let $A \subseteq S$.

Definition

Let $u \in S$ be an element such that $a \leq u$ for all elements $a \in A$, then u is an **upper bound** of A.

Partial Orders 58/68

Let (S, \preceq) be a poset and let $A \subseteq S$.

Definition

Let $u \in S$ be an element such that $a \leq u$ for all elements $a \in A$, then u is an **upper bound** of A.

Definition

Let $l \in S$ be an element such that $l \leq a$ for all elements $a \in A$, then l is a **lower bound** of A.

Partial Orders 59/68

Let (S, \preceq) be a poset and let $A \subseteq S$.

Definition

Let $u \in S$ be an element such that $a \leq u$ for all elements $a \in A$, then u is an **upper bound** of A.

Definition

Let $l \in S$ be an element such that $l \preceq a$ for all elements $a \in A$, then l is a **lower bound** of A.

Example (using intervals of real numbers)

Whiteboard.

Partial Orders 60/68

Example

- $A = \{a, b, c\}$ Upper bounds: $\{e, f, j, h\}$ Lower bounds: $\{a\}$
- $A = \{j, h\}$ No upper bounds. Lower bounds: $\{a, b, c, d, e, f\}$
- $A = \{a, c, d, f\}$ Upper bounds: $\{f, h, j\}$ Lower bounds: $\{a\}$

Partial Orders 61/68

Definition

An element x is the **supremum** (or the **least upper bound**) of the subset A, denoted by $\sup(A)$, iff x is an upper bound that is less than every other upper bound of A.

Partial Orders 62/68

Definition

An element x is the **supremum** (or the **least upper bound**) of the subset A, denoted by $\sup(A)$, iff x is an upper bound that is less than every other upper bound of A.

Definition

An element y is the **infimum** (or the **greatest lower bound**) of the subset A, denoted by $\inf(A)$, iff y is an lower bound that is greater than every other lower bound of A.

Partial Orders 63/68

Definition

An element x is the **supremum** (or the **least upper bound**) of the subset A, denoted by $\sup(A)$, iff x is an upper bound that is less than every other upper bound of A.

Definition

An element y is the **infimum** (or the **greatest lower bound**) of the subset A, denoted by $\inf(A)$, iff y is an lower bound that is greater than every other lower bound of A.

Example (Using intervals of real numbers) Whiteboard.

Partial Orders 64/68

Example

$$A = \{b,d,g\}$$
 Upper bounds: $\{g,h\}$ $\sup(A) = g$ Lower bounds: $\{a,b\}$ $\inf(A) = b$

Partial Orders 65/68

Problem 26 (p. 493)

Answer these questions for the partial order represented by this Hasse diagram.

- Maximals? $\{l, m\}$
- ullet Minimals? $\{a,b,c\}$
- Greatest element? Doesn't exist
- Least element? Doesn't exist
- Upper bounds of $\{a,b,c\}$? $\{k,l,m\}$
- $\sup(\{a, b, c\})$? k
- Lower bounds of $\{f, g, h\}$? Don't exist
- $\inf(\{f,g,h\})$? Doesn't exist

Partial Orders 66/68

Problem 27 (p. 492)

Answer these questions for the poset $(\{3, 5, 9, 15, 24, 45\}, |)$.

- Maximals? $\{24, 45\}$
- Minimals? $\{3,5\}$
- Greatest element? Doesn't exist
- Least element? Doesn't exist
- Upper bounds of $\{3,5\}$? $\{15,45\}$
- $\sup(\{3,5\})$? 15
- Lower bounds of $\{15, 45\}$? $\{3, 5, 15\}$
- \bullet inf($\{15,45\}$)? 15

Partial Orders 67/68

References

Rosen, K. H. (2004). *Matemática Discreta y sus Aplicaciones*. 5th ed. Translated by José Manuel Pérez Morales and others. McGraw-Hill (cit. on p. 2).

Partial Orders 68/68