CM0246 Discrete Structures Partial Orders

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Introduction

We can use relations to order some or all the elements of a set.

Introduction

We can use relations to order some or all the elements of a set.

Example

Some order relations.

- The words in a dictionary
$(a, b) \in R$ if a comes before b in the dictionary.

Introduction

We can use relations to order some or all the elements of a set.

Example

Some order relations.

- The words in a dictionary
$(a, b) \in R$ if a comes before b in the dictionary.
- Academic genealogical descent
$(a, b) \in R$ if a was the supervisor of the thesis of b.

Introduction

We can use relations to order some or all the elements of a set.

Example

Some order relations.

- The words in a dictionary
$(a, b) \in R$ if a comes before b in the dictionary.
- Academic genealogical descent
$(a, b) \in R$ if a was the supervisor of the thesis of b.
- Schedule projects
$(a, b) \in R$ if a is a task that must be completed before the task b begins.

Partial Orders

Definition
A relation on a set A is a (non-strict) partial order iff it is reflexive, antisymmetric and transitive.

Partial Orders

Definition

A relation on a set A is a (non-strict) partial order iff it is reflexive, antisymmetric and transitive.

Definition
Let R be a partial order on a set A, then (A, R) is called a partially ordered set (or poset).

Partial Orders

Definition

A relation on a set A is a (non-strict) partial order iff it is reflexive, antisymmetric and transitive.

Definition
Let R be a partial order on a set A, then (A, R) is called a partially ordered set (or poset).

Example

- (\mathbb{Z}, \leq) is a poset.

Partial Orders

Definition

A relation on a set A is a (non-strict) partial order iff it is reflexive, antisymmetric and transitive.

Definition

Let R be a partial order on a set A, then (A, R) is called a partially ordered set (or poset).

Example

- (\mathbb{Z}, \leq) is a poset.
- $(P(A), \subseteq)$ is a poset.

Partial Orders

Definition

Let $a, b \in \mathbb{Z}$ with $a \neq 0$. The divisibility relation, denoted by \mid, is defined by

$$
a \mid b \stackrel{\text { def }}{=} \exists c(b=a c)
$$

If $a \mid b$, we say that a divides b.

Partial Orders

Definition

Let $a, b \in \mathbb{Z}$ with $a \neq 0$. The divisibility relation, denoted by \mid, is defined by

$$
a \mid b \stackrel{\text { def }}{=} \exists c(b=a c)
$$

If $a \mid b$, we say that a divides b.

Example
Whiteboard.

Partial Orders

Definition

Let $a, b \in \mathbb{Z}$ with $a \neq 0$. The divisibility relation, denoted by \mid, is defined by

$$
a \mid b \stackrel{\text { def }}{=} \exists c(b=a c)
$$

If $a \mid b$, we say that a divides b.

Example
Whiteboard.
Example

- $\left(\mathbb{Z}^{+}, \mid\right)$is a poset.

Partial Orders

Definition

Let $a, b \in \mathbb{Z}$ with $a \neq 0$. The divisibility relation, denoted by \mid, is defined by

$$
a \mid b \stackrel{\text { def }}{=} \exists c(b=a c)
$$

If $a \mid b$, we say that a divides b.

Example
Whiteboard.
Example

- $\left(\mathbb{Z}^{+}, \mid\right)$is a poset.
- Is (\mathbb{N}, \mid) a poset?

Partial Orders

Problem 6 (p. 492)
Let (A, R) be a poset. Prove that $\left(S, R^{-1}\right)$ is also a poset, where R^{-1} is the inverse of R. The poset $\left(S, R^{-1}\right)$ is called the dual of (S, R).

Partial Orders

Notation

\preceq : Denotes an arbitrary partial order
$a \prec b \stackrel{\text { def }}{=} a \preceq b \wedge a \neq b$
(A, \preceq) : Denotes an arbitrary poset

Comparable Elements

Definition

Let (A, \preceq) be a poset. The elements $a, b \in A$ are called comparable iff either $a \preceq b$ or $b \preceq a$.

Comparable Elements

Definition

Let (A, \preceq) be a poset. The elements $a, b \in A$ are called comparable iff either $a \preceq b$ or $b \preceq a$.

Example
Whiteboard

Total Orders

Definition

If (A, \preceq) is a poset and every two elements of A are comparable, A is called a totally ordered set (or linearly ordered set). The relation \preceq is called a total order (or a linear order).

Total Orders

Definition

If (A, \preceq) is a poset and every two elements of A are comparable, A is called a totally ordered set (or linearly ordered set). The relation \preceq is called a total order (or a linear order).

Example

- (\mathbb{Z}, \leq) is a totally ordered set.

Total Orders

Definition

If (A, \preceq) is a poset and every two elements of A are comparable, A is called a totally ordered set (or linearly ordered set). The relation \preceq is called a total order (or a linear order).

Example

- (\mathbb{Z}, \leq) is a totally ordered set.
- $\left(\mathbb{Z}^{+}, \mid\right)$is a not totally order set.

Total Orders

Definition

If (A, \preceq) is a poset and every two elements of A are comparable, A is called a totally ordered set (or linearly ordered set). The relation \preceq is called a total order (or a linear order).

Example

- (\mathbb{Z}, \leq) is a totally ordered set.
- $\left(\mathbb{Z}^{+}, \mid\right)$is a not totally order set.
- Is $(P(A), \subseteq)$ a totally ordered set?

Well-Ordered Sets

Definition

An element $a \in A$ is the least element (mínimo) of a poset (A, \preceq) iff $a \preceq b$ for all $b \in A$.

Well-Ordered Sets

Definition

An element $a \in A$ is the least element (mínimo) of a poset (A, \preceq) iff $a \preceq b$ for all $b \in A$.

Definition

Let (A, \preceq) be a totally ordered set. The set (A, \preceq) is a well-ordered set iff every non-empty subset of A has a least element.

Well-Ordered Sets

Definition

An element $a \in A$ is the least element (mínimo) of a poset (A, \preceq) iff $a \preceq b$ for all $b \in A$.

Definition

Let (A, \preceq) be a totally ordered set. The set (A, \preceq) is a well-ordered set iff every non-empty subset of A has a least element.

Example

- (\mathbb{N}, \leq) is a well-ordered set.

Well-Ordered Sets

Definition

An element $a \in A$ is the least element (mínimo) of a poset (A, \preceq) iff $a \preceq b$ for all $b \in A$.

Definition

Let (A, \preceq) be a totally ordered set. The set (A, \preceq) is a well-ordered set iff every non-empty subset of A has a least element.

Example

- (\mathbb{N}, \leq) is a well-ordered set.
- (\mathbb{N}, \geq) is not a well-ordered set.

Well-Ordered Sets

Definition

An element $a \in A$ is the least element (mínimo) of a poset (A, \preceq) iff $a \preceq b$ for all $b \in A$.

Definition

Let (A, \preceq) be a totally ordered set. The set (A, \preceq) is a well-ordered set iff every non-empty subset of A has a least element.

Example

- (\mathbb{N}, \leq) is a well-ordered set.
- (\mathbb{N}, \geq) is not a well-ordered set.
- Is (\mathbb{Z}, \leq) a well-ordered set?

Hasse Diagrams

Example
Digraph for the relation $\{(a, b) \mid a \leq b\}$ on $\{1,2,3,4\}$.
See whiteboard.

Hasse Diagrams

Constructing a Hasse diagram

1. Construct a digraph representation for the poset (A, \preceq).
2. Remove these loops.
3. Remove all edges that must be in the partial ordering because of the presence of other edges and transitivity.
4. Arrange each edge so that its initial vertex is below its terminal vertex.
5. Remove all the arrows on the directed edges.

Hasse Diagrams

Example

Hasse diagram for the poset $(\{a, b, c\}, \subseteq)$.

Hasse Diagrams

Exercise

Draw the Hasse diagram for the poset $(\{1,2,3,4,6,8,12\}, \mid)$.

Hasse Diagrams

Exercise

Draw the Hasse diagram for the poset $(\{1,2,3,4,6,8,12\}, \mid)$.

Lexicographic Ordering

Example

Let \preceq be relation on $\mathbb{Z} \times \mathbb{Z}$ defined by

$$
\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=} a_{1}<a_{2} \text { or }\left(a_{1}=a_{2} \text { and } b_{1} \leq b_{2}\right) .
$$

Lexicographic Ordering

Example

Let \preceq be relation on $\mathbb{Z} \times \mathbb{Z}$ defined by

$$
\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=} a_{1}<a_{2} \text { or }\left(a_{1}=a_{2} \text { and } b_{1} \leq b_{2}\right) .
$$

- Is $(3,100) \preceq(4,4)$?

Lexicographic Ordering

Example

Let \preceq be relation on $\mathbb{Z} \times \mathbb{Z}$ defined by

$$
\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=} a_{1}<a_{2} \text { or }\left(a_{1}=a_{2} \text { and } b_{1} \leq b_{2}\right) .
$$

- Is $(3,100) \preceq(4,4)$?
- Is $(3,5) \preceq(3,4)$?

Lexicographic Ordering

Example

Let \preceq be relation on $\mathbb{Z} \times \mathbb{Z}$ defined by

$$
\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=} a_{1}<a_{2} \text { or }\left(a_{1}=a_{2} \text { and } b_{1} \leq b_{2}\right) .
$$

- Is $(3,100) \preceq(4,4)$?
- Is $(3,5) \preceq(3,4)$?
- Is $(\mathbb{Z} \times \mathbb{Z}, \preceq)$ a poset?

Lexicographic Ordering

Example

Let \preceq be relation on $\mathbb{Z} \times \mathbb{Z}$ defined by

$$
\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=} a_{1}<a_{2} \text { or }\left(a_{1}=a_{2} \text { and } b_{1} \leq b_{2}\right) .
$$

- Is $(3,100) \preceq(4,4)$?
- Is $(3,5) \preceq(3,4)$?
- Is $(\mathbb{Z} \times \mathbb{Z}, \preceq)$ a poset?
- Is $(\mathbb{Z} \times \mathbb{Z}, \preceq)$ a totally ordered set?

Lexicographic Ordering

Definition

Let $\left(A, \preceq_{A}\right)$ and $\left(B, \preceq_{B}\right)$ be two posets. The lexicographic ordering \preceq on $A \times B$ is defined by:

$$
\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=} a_{1} \prec_{A} a_{2} \text { or }\left(a_{1}=a_{2} \text { and } b_{1} \preceq_{B} b_{2}\right) .
$$

Lexicographic Ordering

Definition

Let $\left(A, \preceq_{A}\right)$ and $\left(B, \preceq_{B}\right)$ be two posets. The lexicographic ordering \preceq on $A \times B$ is defined by:

$$
\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=} a_{1} \prec_{A} a_{2} \text { or }\left(a_{1}=a_{2} \text { and } b_{1} \preceq_{B} b_{2}\right) .
$$

Example

- Previous example

Lexicographic Ordering

Definition

Let $\left(A, \preceq_{A}\right)$ and $\left(B, \preceq_{B}\right)$ be two posets. The lexicographic ordering \preceq on $A \times B$ is defined by:

$$
\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=} a_{1} \prec_{A} a_{2} \text { or }\left(a_{1}=a_{2} \text { and } b_{1} \preceq_{B} b_{2}\right) .
$$

Example

- Previous example
- Whiteboard

Lexicographic Ordering

Definition

Let $\left(A_{1}, \preceq_{1}\right), \ldots,\left(A_{n}, \preceq_{n}\right)$ be n posets. The lexicographic ordering \preceq on $A_{1} \times \cdots \times A_{n}$ is defined by:
$\left(a_{1}, \ldots, a_{n}\right) \preceq\left(b_{1}, \ldots, b_{n}\right) \stackrel{\text { def }}{=}(\exists m>0)(\forall i<m)\left(a_{i}=b_{i} \wedge a_{m} \preceq_{m} b_{m}\right)$,
that is, if one of the terms $a_{m} \preceq_{m} b_{m}$ and all the preceding terms are equal.

Lexicographic Ordering

Example

Let Σ be an alphabet defined by $\Sigma=\{0,1\}$. The lexicographical ordering on $(\Sigma, \leq) \times(\Sigma, \leq) \times(\Sigma, \leq)$ is given by
$\left.\begin{array}{l}111 \\ 110 \\ 101 \\ 100 \\ 011 \\ 010 \\ 001 \\ 0\end{array}\right\}$

Lexicographic Ordering

Definition

Let Σ^{*} be the set of all words (finite sequence of symbols) on an alphabet Σ, including the empty word denoted by λ.

A lexicographic ordering on Σ^{*} can be defined by: if the words are the same length, use the lexicographic ordering of n posets, else the shorter sequence should be padded at the end with enough "blanks" (a special symbol that is treated as smaller than every element of Σ.

Lexicographic Ordering

Example

Let Σ be an alphabet defined by $\Sigma=\{0,1\}$. The lexicographical ordering on $\left\{w \in \Sigma^{*} \mid l(w) \leq 3\right\}$ is given by

Product Order

Definition

Let $\left(A, \preceq_{A}\right)$ and $\left(B, \preceq_{B}\right)$ be two posets. The product order \preceq on $A \times B$ is defined by:

$$
\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=} a_{1} \preceq_{A} a_{2} \text { and } b_{1} \preceq_{B} b_{2} .
$$

Product Order

Definition

Let $\left(A, \preceq_{A}\right)$ and $\left(B, \preceq_{B}\right)$ be two posets. The product order \preceq on $A \times B$ is defined by:

$$
\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=} a_{1} \preceq_{A} a_{2} \text { and } b_{1} \preceq_{B} b_{2} .
$$

Example
Whiteboard.

Product Order

Problem 33 (p. 494)
Prove that the product order of two posets is a poset.

Product Order

Problem 33 (p. 494)
Prove that the product order of two posets is a poset.

Proof.
Let $\left(A, \preceq_{A}\right)$ and $\left(B, \preceq_{B}\right)$ be two posets. We need to prove that $(A \times B, \preceq)$ is a poset, where \preceq is the product order on $A \times B$.

Product Order

Problem 33 (p. 494)
Prove that the product order of two posets is a poset.

Proof.
Let $\left(A, \preceq_{A}\right)$ and $\left(B, \preceq_{B}\right)$ be two posets. We need to prove that $(A \times B, \preceq)$ is a poset, where \preceq is the product order on $A \times B$.

- Reflexivity: $(a, b) \preceq(a, b)$, for all $a \in A$ and $b \in B$. Whiteboard.

Product Order

Problem 33 (p. 494)
Prove that the product order of two posets is a poset.

Proof.

Let $\left(A, \preceq_{A}\right)$ and $\left(B, \preceq_{B}\right)$ be two posets. We need to prove that $(A \times B, \preceq)$ is a poset, where \preceq is the product order on $A \times B$.

- Reflexivity: $(a, b) \preceq(a, b)$, for all $a \in A$ and $b \in B$. Whiteboard.
- Antisymmetry: If $\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right)$ and $\left(a_{2}, b_{2}\right) \preceq\left(a_{1}, b_{1}\right)$ then $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$, for all $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$. Whiteboard.

Product Order

Problem 33 (p. 494)
Prove that the product order of two posets is a poset.

Proof.

Let $\left(A, \preceq_{A}\right)$ and $\left(B, \preceq_{B}\right)$ be two posets. We need to prove that $(A \times B, \preceq)$ is a poset, where \preceq is the product order on $A \times B$.

- Reflexivity: $(a, b) \preceq(a, b)$, for all $a \in A$ and $b \in B$. Whiteboard.
- Antisymmetry: If $\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right)$ and $\left(a_{2}, b_{2}\right) \preceq\left(a_{1}, b_{1}\right)$ then $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$, for all $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$. Whiteboard.
- Transitivity: If $\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right)$ and $\left(a_{2}, b_{2}\right) \preceq\left(a_{3}, b_{3}\right)$ then $\left(a_{1}, b_{1}\right) \preceq\left(a_{3}, b_{3}\right)$, for all $a_{1}, a_{2}, a_{3} \in A$ and $b_{1}, b_{2}, b_{3} \in B$. Whiteboard.

Product Order

Example
Hasse diagram for the product order of the posets $(\{1,2,3\}, \leq)$ and $(\{1,2,3\}, \geq)$.

Notable Elements

Let (A, \preceq) be a poset.

Definition

An element $a \in A$ is the greatest element (máximo) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.

Notable Elements

Let (A, \preceq) be a poset.

Definition

An element $a \in A$ is the greatest element (máximo) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.

Definition
An element $a \in A$ is the least element (mínimo) iff $a \preceq b$ for all $b \in A$.

Notable Elements

Let (A, \preceq) be a poset.

Definition

An element $a \in A$ is the greatest element (máximo) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.

Definition
An element $a \in A$ is the least element (mínimo) iff $a \preceq b$ for all $b \in A$.

Definition

An element $a \in A$ is a maximal of (A, \preceq) if there is no $b \in A$ such that $a \prec b$.

Notable Elements

Let (A, \preceq) be a poset.

Definition

An element $a \in A$ is the greatest element (máximo) of (A, \preceq) iff $b \preceq a$ for all $b \in A$.

Definition

An element $a \in A$ is the least element (mínimo) iff $a \preceq b$ for all $b \in A$.

Definition

An element $a \in A$ is a maximal of (A, \preceq) if there is no $b \in A$ such that $a \prec b$.

Definition

An element $a \in A$ is a minimal (A, \preceq) if there is no $b \in A$ such that $b \prec a$.

Notable Elements

Example

(a)

(b)

(c)

(d)

Fig. Least element Greatest element Maximals Minimals
(a) a
c, d, e
a
(b)
(c)
(d)
a
d
d

d, e	a, b
d	a, b
d	a

Notable Elements

Let (S, \preceq) be a poset and let $A \subseteq S$.

Definition

Let $u \in S$ be an element such that $a \preceq u$ for all elements $a \in A$, then u is an upper bound of A.

Notable Elements

Let (S, \preceq) be a poset and let $A \subseteq S$.

Definition

Let $u \in S$ be an element such that $a \preceq u$ for all elements $a \in A$, then u is an upper bound of A.

Definition

Let $l \in S$ be an element such that $l \preceq a$ for all elements $a \in A$, then l is a lower bound of A.

Notable Elements

Let (S, \preceq) be a poset and let $A \subseteq S$.

Definition

Let $u \in S$ be an element such that $a \preceq u$ for all elements $a \in A$, then u is an upper bound of A.

Definition

Let $l \in S$ be an element such that $l \preceq a$ for all elements $a \in A$, then l is a lower bound of A.

Example (using intervals of real numbers)
Whiteboard.

Notable Elements

Example

- $A=\{a, b, c\}$

Upper bounds: $\{e, f, j, h\}$
Lower bounds: $\{a\}$

- $A=\{j, h\}$

No upper bounds.
Lower bounds: $\{a, b, c, d, e, f\}$

- $A=\{a, c, d, f\}$

Upper bounds: $\{f, h, j\}$
Lower bounds: $\{a\}$

Notable Elements

Definition

An element x is the supremum (or the least upper bound) of the subset A, denoted by $\sup (A)$, iff x is an upper bound that is less than every other upper bound of A.

Notable Elements

Definition

An element x is the supremum (or the least upper bound) of the subset A, denoted by $\sup (A)$, iff x is an upper bound that is less than every other upper bound of A.

Definition

An element y is the infimum (or the greatest lower bound) of the subset A, denoted by $\inf (A)$, iff y is an lower bound that is greater than every other lower bound of A.

Notable Elements

Definition

An element x is the supremum (or the least upper bound) of the subset A, denoted by $\sup (A)$, iff x is an upper bound that is less than every other upper bound of A.

Definition

An element y is the infimum (or the greatest lower bound) of the subset A, denoted by $\inf (A)$, iff y is an lower bound that is greater than every other lower bound of A.

Example (Using intervals of real numbers)
Whiteboard.

Notable Elements

Example
$A=\{b, d, g\}$
Upper bounds: $\{g, h\}$
$\sup (A)=g$
Lower bounds: $\{a, b\}$ $\inf (A)=b$

Notable Elements

Problem 26 (p. 493)
Answer these questions for the partial order represented by this Hasse diagram.

- Maximals? $\{l, m\}$
- Minimals? $\{a, b, c\}$
- Greatest element? Doesn't exist
- Least element? Doesn't exist
- Upper bounds of $\{a, b, c\}$? $\{k, l, m\}$
- $\sup (\{a, b, c\})$? k
- Lower bounds of $\{f, g, h\}$? Don't exist
- $\inf (\{f, g, h\})$? Doesn't exist

Notable Elements

Problem 27 (p. 492)
Answer these questions for the poset $(\{3,5,9,15,24,45\}, \mid)$.

- Maximals? $\{24,45\}$
- Minimals? $\{3,5\}$
- Greatest element? Doesn't exist
- Least element? Doesn't exist
- Upper bounds of $\{3,5\}$? $\{15,45\}$
- $\sup (\{3,5\}) ? 15$

- Lower bounds of $\{15,45\}$? $\{3,5,15\}$
- $\inf (\{15,45\}) ? 15$

References

Rosen, K. H. (2004). Matemática Discreta y sus Aplicaciones. 5th ed. Translated by José Manuel Pérez Morales and others. McGraw-Hill (cit. on p. 2).

