CM0246 Discrete Structures
 Mathematical Induction

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Motivation

Exercise

Conjecture a formula for the sum of the first n positive odd integers.

Motivation

Exercise

Conjecture a formula for the sum of the first n positive odd integers.
Question
Let $P(n)$ be a propositional function. How can we proof that $P(n)$ is true for all $n \in \mathbb{Z}^{+}$?

Principle of Mathematical Induction

Proof by mathematical induction
Let $P(n)$ be a propositional function.
To prove that $P(n)$ is true for all $n \in \mathbb{Z}^{+}$, we must make two proofs:

- Basis step: Prove $P(1)$

Principle of Mathematical Induction

Proof by mathematical induction
Let $P(n)$ be a propositional function.
To prove that $P(n)$ is true for all $n \in \mathbb{Z}^{+}$, we must make two proofs:

- Basis step: Prove $P(1)$
- Inductive step: Prove $P(k) \rightarrow P(k+1)$ for all $k \in \mathbb{Z}^{+}$
$P(k)$ is called the inductive hypothesis.

Principle of Mathematical Induction

How mathematical induction works ${ }^{\dagger}$

${ }^{\dagger}$ Figure source: (Rosen 2012, § 5.1, Fig. 2).

Principle of Mathematical Induction

Definition (principle of mathematical induction)
Inference rule version:

$$
\begin{gathered}
{[P(k)]} \\
\vdots \\
\frac{P(1) \quad P(k+1)}{P(n)}(\mathrm{PMI})
\end{gathered}
$$

Principle of Mathematical Induction

Definition (principle of mathematical induction)
Inference rule version:

$$
\begin{gathered}
{[P(k)]} \\
\vdots \\
\frac{P(1) \quad P(k+1)}{P(n)}(\mathrm{PMI})
\end{gathered}
$$

Axiom (or theorem) version: Let P be a propositional function (predicate). Then

$$
[P(1) \wedge \forall k(P(k) \rightarrow P(k+1)] \rightarrow \forall n P(n) \quad(\mathrm{PMI})
$$

Principle of Mathematical Induction

Methodology for proving by mathematical induction

Principle of Mathematical Induction

Methodology for proving by mathematical induction

1. State the propositional function $P(n)$.

Principle of Mathematical Induction

Methodology for proving by mathematical induction

1. State the propositional function $P(n)$.
2. Prove the basis step, i.e. $P(1)$.

Principle of Mathematical Induction

Methodology for proving by mathematical induction

1. State the propositional function $P(n)$.
2. Prove the basis step, i.e. $P(1)$.
3. Prove the induction step, i.e. $\forall k(P(k) \rightarrow P(k+1))$.

Remark: In this proof you need to use the inductive hypothesis $P(n)$.

Principle of Mathematical Induction

Methodology for proving by mathematical induction

1. State the propositional function $P(n)$.
2. Prove the basis step, i.e. $P(1)$.
3. Prove the induction step, i.e. $\forall k(P(k) \rightarrow P(k+1))$.

Remark: In this proof you need to use the inductive hypothesis $P(n)$.
4. Conclude $\forall n P(n)$ by the principle of mathematical induction.

Principle of Mathematical Induction

Example

Prove that the sum of the first n odd positive integers is $n^{2} .{ }^{\dagger}$
Whiteboard.
${ }^{\dagger}$ Historical remark. From 1575, it could be the first property proved using the PMI (Gunderson 2011, § 1.8).

Principle of Mathematical Induction

Example
Prove that if $n \in \mathbb{Z}^{+}$, then

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Principle of Mathematical Induction

Example

Prove that if $n \in \mathbb{Z}^{+}$, then

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2} .
$$

Proof

$$
\text { 1. } P(n): 1+2+3+\cdots+n=\frac{n(n+1)}{2} \text {. }
$$

Principle of Mathematical Induction

Example

Prove that if $n \in \mathbb{Z}^{+}$, then

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2} .
$$

Proof

1. $P(n): 1+2+3+\cdots+n=\frac{n(n+1)}{2}$.
2. Basis step $P(1): 1=\frac{1(1+1)}{2}$.

Continued on next slide

Principle of Mathematical Induction

Proof (continuation)

3. Inductive step:

Inductive hypothesis $P(k): 1+2+3+\cdots+k=\frac{k(k+1)}{2}$.
Let's prove $P(k+1)$:

$$
\begin{array}{rlrl}
1+2+3+\cdots+k+(k+1) & =\frac{k(k+1)}{2}+(k+1) & (\text { by IH }) \\
& =(k+1)\left(\frac{k}{2}+1\right) & & \text { (by arithmetic) } \\
& =\frac{(k+1)(k+2)}{2} & & \text { (by arithmetic) }
\end{array}
$$

Principle of Mathematical Induction

Proof (continuation)
3. Inductive step:

Inductive hypothesis $P(k): 1+2+3+\cdots+k=\frac{k(k+1)}{2}$.
Let's prove $P(k+1)$:

$$
\begin{array}{rll}
1+2+3+\cdots+k+(k+1) & =\frac{k(k+1)}{2}+(k+1) & (\text { by IH }) \tag{byIH}\\
& =(k+1)\left(\frac{k}{2}+1\right) & \\
\text { (by arithmetic) } \\
& =\frac{(k+1)(k+2)}{2} & \\
\text { (by arithmetic) }
\end{array}
$$

4. $\forall n P(n)$ by the principle of induction mathematical.

Principle of Mathematical Induction

Example

Prove that if $n \in \mathbb{N}$, then

$$
2^{0}+2^{1}+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

Proved on next slide

Principle of Mathematical Induction

Proof

$$
\text { 1. } P(n): 2^{0}+2^{1}+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

Principle of Mathematical Induction

Proof

1. $P(n): 2^{0}+2^{1}+2^{2}+\cdots+2^{n}=2^{n+1}-1$
2. Basis step $P(0): 2^{0}=1=2^{0+1}-1$.

Principle of Mathematical Induction

Proof

1. $P(n): 2^{0}+2^{1}+2^{2}+\cdots+2^{n}=2^{n+1}-1$
2. Basis step $P(0): 2^{0}=1=2^{0+1}-1$.
3. Inductive step:

Inductive hypothesis $P(k): 2^{0}+2^{1}+2^{2}+\cdots+2^{k}=2^{k+1}-1$
Let's prove $P(k+1)$:

$$
\begin{align*}
2^{0}+2^{1}+2^{2}+\cdots+2^{k}+2^{k+1} & =2^{k+1}-1+2^{k+1} & & (\text { by IH }) \tag{byIH}\\
& =2\left(2^{k+1}\right)-1 & & (\text { by arithmetic }) \\
& =2^{k+2}-1 & & (\text { by arithmetic })
\end{align*}
$$

Principle of Mathematical Induction

Proof

1. $P(n): 2^{0}+2^{1}+2^{2}+\cdots+2^{n}=2^{n+1}-1$
2. Basis step $P(0): 2^{0}=1=2^{0+1}-1$.
3. Inductive step:

Inductive hypothesis $P(k): 2^{0}+2^{1}+2^{2}+\cdots+2^{k}=2^{k+1}-1$
Let's prove $P(k+1)$:

$$
\begin{align*}
2^{0}+2^{1}+2^{2}+\cdots+2^{k}+2^{k+1} & =2^{k+1}-1+2^{k+1} & & (\text { by IH }) \tag{byIH}\\
& =2\left(2^{k+1}\right)-1 & & (\text { by arithmetic }) \\
& =2^{k+2}-1 & & (\text { by arithmetic })
\end{align*}
$$

4. $\forall n P(n)$ by the principle of induction mathematical.

Strong Induction

Proof by strong (or course-of-values) induction
Let $P(n)$ be a propositional function.
To prove that $P(n)$ is true for all $n \in \mathbb{Z}^{+}$, we must make two proofs:

- Basis step: Prove $P(1)$

Strong Induction

Proof by strong (or course-of-values) induction
Let $P(n)$ be a propositional function.
To prove that $P(n)$ is true for all $n \in \mathbb{Z}^{+}$, we must make two proofs:

- Basis step: Prove $P(1)$
- Inductive step: Prove $[P(1) \wedge P(2) \wedge \cdots \wedge P(k)] \rightarrow P(k+1)$ for all $k \in \mathbb{Z}^{+}$

Strong Induction

Proof by strong (or course-of-values) induction
Let $P(n)$ be a propositional function.
To prove that $P(n)$ is true for all $n \in \mathbb{Z}^{+}$, we must make two proofs:

- Basis step: Prove $P(1)$
- Inductive step: Prove $[P(1) \wedge P(2) \wedge \cdots \wedge P(k)] \rightarrow P(k+1)$ for all $k \in \mathbb{Z}^{+}$

The (strong) inductive hypothesis is given by

$$
P(j) \text { is true for } j=1,2, \ldots, k .
$$

Strong Induction

Definition ([strong induction)
Inference rule version:
$\frac{P(1) \quad \forall k[(P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \rightarrow P(k+1)]}{\forall n P(n)}$ (strong induction)

Strong Induction

Example (a part of the fundamental theorem of arithmetic)
Prove that if n is an integer greater than 1, either is prime itself or is the product of prime numbers.

Proved on next slide

Strong Induction

Proof

1. $P(n): n$ is prime itself or it is the product of prime numbers.

Strong Induction

Proof

1. $P(n): n$ is prime itself or it is the product of prime numbers.
2. Basis step $P(2): 2$ is a prime number.

Strong Induction

Proof

1. $P(n): n$ is prime itself or it is the product of prime numbers.
2. Basis step $P(2): 2$ is a prime number.
3. Inductive step:

Inductive hypothesis: $P(j)$ is true for $j=1,2, \ldots, k$.

Strong Induction

Proof

1. $P(n): n$ is prime itself or it is the product of prime numbers.
2. Basis step $P(2): 2$ is a prime number.
3. Inductive step:

Inductive hypothesis: $P(j)$ is true for $j=1,2, \ldots, k$. Let's prove that $k+1$ satisfies the property:

Strong Induction

Proof

1. $P(n): n$ is prime itself or it is the product of prime numbers.
2. Basis step $P(2): 2$ is a prime number.
3. Inductive step:

Inductive hypothesis: $P(j)$ is true for $j=1,2, \ldots, k$.
Let's prove that $k+1$ satisfies the property:
3.1 If $k+1$ is a prime number then it satisfies the property.

Strong Induction

Proof

1. $P(n): n$ is prime itself or it is the product of prime numbers.
2. Basis step $P(2): 2$ is a prime number.
3. Inductive step:

Inductive hypothesis: $P(j)$ is true for $j=1,2, \ldots, k$.
Let's prove that $k+1$ satisfies the property:
3.1 If $k+1$ is a prime number then it satisfies the property.
3.2 If $k+1$ is a composite number:
$k+1=a b$ where $2 \leq a \leq b<k+1$. Since $P(a)$ and $P(b)$ by the inductive hypothesis, then $P(k+1)$.

Strong Induction

Proof

1. $P(n): n$ is prime itself or it is the product of prime numbers.
2. Basis step $P(2): 2$ is a prime number.
3. Inductive step:

Inductive hypothesis: $P(j)$ is true for $j=1,2, \ldots, k$.
Let's prove that $k+1$ satisfies the property:
3.1 If $k+1$ is a prime number then it satisfies the property.
3.2 If $k+1$ is a composite number:
$k+1=a b$ where $2 \leq a \leq b<k+1$. Since $P(a)$ and $P(b)$ by the inductive hypothesis, then $P(k+1)$.
4. $P(n)$ is true for all integer n greater than 1 by strong induction.

First-Order Peano Arithmetic

Axioms of first-order Peano arithmetic ${ }^{\dagger}$

$$
\begin{aligned}
& \forall n \cdot 0 \neq n^{\prime} \\
& \forall m \forall n \cdot m^{\prime}=n^{\prime} \rightarrow m=n \\
& \forall n \cdot 0+n=n \\
& \forall m \forall n \cdot m^{\prime}+n=(m+n)^{\prime} \\
& \forall n \cdot 0 * n=0 \\
& \forall m \forall n \cdot m^{\prime} * n=n+(m * n)
\end{aligned}
$$

Giuseppe Peano (1858-1932)
${ }^{\dagger}$ See, for example, (Hájek and Pudlák 1998).

First-Order Peano Arithmetic

Axioms of first-order Peano arithmetic ${ }^{\dagger}$

$$
\begin{aligned}
& \forall n \cdot 0 \neq n^{\prime} \\
& \forall m \forall n \cdot m^{\prime}=n^{\prime} \rightarrow m=n \\
& \forall n \cdot 0+n=n \\
& \forall m \forall n \cdot m^{\prime}+n=(m+n)^{\prime} \\
& \forall n \cdot 0 * n=0 \\
& \forall m \forall n \cdot m^{\prime} * n=n+(m * n)
\end{aligned}
$$

For all formulae A,
$\left[A(0) \wedge\left(\forall n . A(n) \rightarrow A\left(n^{\prime}\right)\right)\right] \rightarrow \forall n A(n)$
${ }^{\dagger}$ See, for example, (Hájek and Pudlák 1998).

First-Order Peano Arithmetic

Theorem
The principle of mathematical induction and strong induction are equivalent. ${ }^{\dagger}$

References

Gunderson, D. S. (2011). Handbook of Mathematical Induction. Chapman \& Hall (cit. on pp. 15, 40).
Hájek, P. and Pudlák, P. (1998). Metamathematics of First-Order Arithmetic. Second printing. Springer (cit. on pp. 38, 39).
Rosen, K. H. (2004). Matemática Discreta y sus Aplicaciones. 5th ed. Translated by José Manuel Pérez Morales and others. McGraw-Hill (cit. on p. 2). - (2012). Discrete Mathematics and Its Applications. 7th ed. McGrawHill (cit. on p. 7).

