CM0246 Discrete Structures Functions

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Preliminaries

Remark

Recall that if an element of a set is listed more than once it doesn't matter.

Example

$$\{1, 3, 3, 3, 5, 5, 5, 5\} = \{1, 3, 5\}.$$

Preliminaries

Notation

$$\begin{split} \mathbb{N} &= \{0, 1, 2, \ldots\} & (\text{natural numbers,} \\ & \text{non-negative integers}) \\ \mathbb{Z} &= \{\ldots, -2, -1, 0, 1, 2, \ldots\} & (\text{integers}) \\ \mathbb{Z}^+ &= \{1, 2, 3, \ldots\} & (\text{positive integers}) \\ \mathbb{Q} &= \{p/q \mid p, q \in \mathbb{Z} \text{ and } q \neq 0\} & (\text{rational numbers}) \\ \mathbb{R} &= (-\infty, \infty) & (\text{real numbers}) \end{split}$$

Definition

Let A and B be sets. A function (map, mapping or transformation) f from A to B, denoted $f: A \rightarrow B$, is an assignment of exactly one element of B to each element of A.[†]

[†]Figure source: (Rosen 2012, § 2.3, Fig. 2).

Specification of functions

• Explicitly

Specification of functions

- Explicitly
- Formula

Specification of functions

- Explicitly
- Formula
- Programming languages

Specification of functions

- Explicitly
- Formula
- Programming languages

(Advance) question

Are all the functions define using a programming language really functions?

Definitions 1

Let f be a function from A to B:

Domain of f: A

Codomain of f: B

Definitions 1

Let f be a function from A to B:

Domain of f: A

Codomain of f: B

If f(a) = b:

b is the **image** of a

a is a **preimage** of b

The range or image of f: Set of all images of elements of A

Definitions 1

Let f be a function from A to B:

Domain of f: A

Codomain of f: B

If f(a) = b:

- b is the **image** of a
- a is a **preimage** of b

The **range** or **image** of f: Set of all images of elements of AIf C is a subset of A: $f(C) = \{f(a) \mid a \in C\}$

If S is a subset of $A{:}~f(S)=\{\,f(s)\mid s\in S\,\}$

Example

See slides § 2.3, p. 2 for the 6th ed. of Rosen's textbook.

Example

See slides § 2.3, p. 2 for the 6th ed. of Rosen's textbook.

Problem 3 (p. 99)

Determine whether f is a function from the set of all bit strings to the set of integers if

• f(s) is the number of 1 bits in s

Example

See slides § 2.3, p. 2 for the 6th ed. of Rosen's textbook.

Problem 3 (p. 99)

Determine whether f is a function from the set of all bit strings to the set of integers if

- f(s) is the number of 1 bits in s
- f(s) is the position of a 0 bit in s

Example

See slides § 2.3, p. 2 for the 6th ed. of Rosen's textbook.

Problem 3 (p. 99)

Determine whether f is a function from the set of all bit strings to the set of integers if

- f(s) is the number of 1 bits in s
- f(s) is the position of a 0 bit in s
- f(s) is the smallest integer i such that the ith bit of s is 1 and f(s) = 0 when s is the empty string

Definition

Let A and B be sets. The **Cartesian product** of A and B is

$$A \times B = \{ (a, b) \mid a \in A \land b \in B \}.$$

Example

Let $A = \{a, b\}$ and $B = \{1, 2\}$. Then

$$A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$$

Definition

Let A and B be sets. The **Cartesian product** of A and B is

$$A \times B = \{ (a, b) \mid a \in A \land b \in B \}.$$

Example

Let
$$A = \{a, b\}$$
 and $B = \{1, 2\}$. Then

$$A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$$

Definition

A subset R of the Cartesian product $A\times B$ is called a **relation** from the set A to the set B.

Definition

Let A and B be sets. A function f from A to B is a relation of A to B (i.e. subset of $A \times B$) such that

$$\forall x (x \in A \to \exists y (y \in B \land (x, y) \in f))$$

and

$$\forall x \forall y \forall y' \{ ((x,y) \in f \land (x,y') \in f) \to y = y' \}.$$

Remark

In some theories different to set theory, the concept of function is a primitive concept.

Definition

Let $f: A \rightarrow B$. The function f is an **injunction** (or **one-to-one**), if and only if,

f(a) = f(a') implies that a = a' for all $a, a' \in A$.

Definition

Let $f: A \to B$. The function f is an **injunction** (or **one-to-one**), if and any if

if and only if,

f(a) = f(a') implies that a = a' for all $a, a' \in A$.

Example

Whiteboard.

Definition

Let $f: A \rightarrow B$. The function f is an **injunction**, if and only if,

$$\forall x \forall x' (f(x) = f(x') \to x = x')$$

or equivalent

$$\forall x \forall x' (x \neq x' \rightarrow f(x) \neq f(x')) \quad \text{(contrapositive)}$$

where A is the domain of quantification.

Is a function (non)-injective?

Let $f: A \to B$.

• To show that *f* is injective

Show that if f(x) = f(x') for arbitrary $x, x' \in A$ then x = x'.

Is a function (non)-injective?

Let $f: A \to B$.

• To show that f is injective

Show that if f(x) = f(x') for arbitrary $x, x' \in A$ then x = x'.

• To show that f is not injective

Find particular elements $x, x' \in A$ such that $x \neq x'$ and f(x) = f(x').

Is a function (non)-injective?

Let $f: A \to B$.

• To show that f is injective

Show that if f(x) = f(x') for arbitrary $x, x' \in A$ then x = x'.

• To show that f is not injective

Find particular elements $x, x' \in A$ such that $x \neq x'$ and f(x) = f(x').

Exercise

Is the function $f: \mathbb{Z} \to \mathbb{Z}$, where $f(x) = x^2$ injective?

Definition

Let $f: A \to B$. The function f is a surjection (or onto),

if and only if,

for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

Definition

Let $f : A \to B$. The function f is a surjection (or onto),

if and only if,

for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

Example

Whiteboard.

Definition

Let $f: A \rightarrow B$. The function f is a **surjection**, if and only if,

 $\forall y \exists x (f(x) = y),$

where A is the domain of quantification for \boldsymbol{x} and B is the domain of quantification for $\boldsymbol{y}.$

Is a function (non)-surjective?

Let $f: A \to B$.

• To show that f is surjective

Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

Is a function (non)-surjective?

Let $f: A \to B$.

• To show that f is surjective

Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

• To show that f is not surjective

Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Is a function (non)-surjective?

Let $f: A \to B$.

• To show that f is surjective

Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

• To show that f is not surjective

Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Exercise

Is the function $f : \mathbb{Z} \to \mathbb{Z}$, where f(x) = x + 1 surjective?

Bijective Functions

Definition

A function f is a **bijection** (or **one-to-one correspondence**),

if and only if,

it is both injective and surjective.

Bijective Functions

Definition

A function f is a **bijection** (or **one-to-one correspondence**),

if and only if,

it is both injective and surjective.

Example (the identity function)

Let A be a set. The identity function $\iota_A : A \to A$ where $\iota_A(a) = a$ is bijective.

Injective, Surjective and Bijective Functions

Example

Types of functions. †

[†]Figure source: (Rosen 2012, § 2.3, Fig. 5).

Injective, Surjective and Bijective Functions

Problem 16 (p. 100)

Give an example of a function from $\mathbb N$ to $\mathbb N \colon$

a) injective but not surjective

$$f(x) = x + 1.$$

b) surjective but not injective

$$f(x) = \begin{cases} 0, & \text{if } x = 0 \text{ or } x = 1; \\ x - 1, & \text{otherwise.} \end{cases}$$

Continued on next slide

Injective, Surjective and Bijective Functions

Problem (continuation)

c) bijective (but different from the identity function)

$$f(x) = \begin{cases} 0, & \text{if } x = 1; \\ 1, & \text{if } x = 0; \\ x, & \text{otherwise.} \end{cases}$$

d) neither injective nor surjective

$$f(x) = 5.$$

Inverse Functions

Definition

Let $f:A\to B$ be a bijective function. The inverse function of f, denoted $f^{-1},$ is the function from B to A defined by †

$$f^{-1}(b) = a \text{ iff } f(a) = b.$$

[†]Figure source: (Rosen 2012, § 2.3, Fig. 6).

Inverse Functions

Exercise

Let $f : \mathbb{Z} \to \mathbb{Z}$, where f(x) = x + 1. Find f^{-1} .

Inverse Functions

Exercise

Let $f : \mathbb{Z} \to \mathbb{Z}$, where f(x) = x + 1. Find f^{-1} .

Question

If a function f is not bijective, we cannot define f^{-1} . Why?

Definition

Let $g: A \to B$ and $f: B \to C$ be two functions. The **composition** of f with g, denoted $f \circ g$, is the function from A to C defined by[†]

$$(f \circ g)(a) = f(g(a)).$$

[†]Figure source: (Rosen 2012, § 2.3, Fig. 7).

Example

See slides § 2.3, p. 8 for the 6th ed. of Rosen's textbook.

Example

See slides § 2.3, p. 8 for the 6th ed. of Rosen's textbook.

Remark

Let f and g be functions. The composition $f \circ g$ cannot be defined unless the range of g is a subset of the domain of f.

Example

Let $f: A \to B$ a bijective function such that f(a) = b.

The function $f \circ f^{-1} : B \to B$ is defined by

$$(f \circ f^{-1})(b) = f(f^{-1}(b))$$
$$= f(a)$$
$$= b$$

(by def. of composition)
(by def. of inverse function)
(by def. of inverse function)

that is, $f \circ f^{-1} = \iota_B$.

Remark

In general, the composition of function is not commutative.

Remark

In general, the composition of function is not commutative.

Exercise

Let $f,g:\mathbb{N}\to\mathbb{N}$ be functions, where $f(x)=x^2$ and g(x)=2x+1. Show that $f\circ g\neq g\circ f$.

Problem 25(b) (p. 100)

Let $g: A \to B$ and $f: B \to C$ be two functions. Show that if both f and g are surjective functions, then $f \circ g$ is also surjective.

Solved on next slide

Proof

1. Let $c \in C$.

Proof

- 1. Let $c \in C$.
- 2. f(b) = c, for some $b \in B$ because f is surjective by hypothesis.

Proof

- 1. Let $c \in C$.
- 2. f(b) = c, for some $b \in B$ because f is surjective by hypothesis.
- 3. g(a) = b, for some $a \in A$ because g is surjective by hypothesis.

Proof

- 1. Let $c \in C$.
- 2. f(b) = c, for some $b \in B$ because f is surjective by hypothesis.
- 3. g(a) = b, for some $a \in A$ because g is surjective by hypothesis.

4. Then

$$(f \circ g)(a) = f(g(a))$$
 (by def. of composition)
= $f(b)$ (by 3)
= c . (by 2)

Proof

- 1. Let $c \in C$.
- 2. f(b) = c, for some $b \in B$ because f is surjective by hypothesis.
- 3. g(a) = b, for some $a \in A$ because g is surjective by hypothesis.

4. Then

$$(f \circ g)(a) = f(g(a))$$
 (by def. of composition)
= $f(b)$ (by 3)
= c . (by 2)

5. That is, for all $c \in C$, exists $a \in A$ such that $(f \circ g)(a) = c$.

Proof

- 1. Let $c \in C$.
- 2. f(b) = c, for some $b \in B$ because f is surjective by hypothesis.
- 3. g(a) = b, for some $a \in A$ because g is surjective by hypothesis.

4. Then

$$(f \circ g)(a) = f(g(a))$$
 (by def. of composition)
= $f(b)$ (by 3)
= c . (by 2)

5. That is, for all $c \in C$, exists $a \in A$ such that $(f \circ g)(a) = c$. 6. Hence, $f \circ g$ is surjective.

Problem 26 (p. 101)

If f and $f\circ g$ are injections, does it follow that g is injective? Justify your answer.

Proof

The function g must be injective.

- 1. Let $g:A\to B$ and $f:B\to C$ be two functions, and suppose g is not injective.
- 2. Exists distinct elements $x,x' \in A$ such that g(x) = g(x') because g is not injective.
- 3. Then

$$\begin{aligned} (f \circ g)(x) &= f(g(x)) & \text{(by def. de composition)} \\ &= f(g(x')) & \text{(by step 2)} \\ &= (f \circ g)(x'). & \text{(by def. de composition)} \end{aligned}$$

Hence, $f \circ g$ is not injective (contradiction).

4. Therefore, the function g must be injective.

Definition

Let $f: A \to B$. The **graph** of f is the set

$$\{ (a,b) \mid a \in A \text{ and } f(a) = b \}.$$

Definition

Let $f: A \to B$. The **graph** of f is the set

```
\left\{\,(a,b)\mid a\in A \text{ and } f(a)=b\,\right\}.
```

Example

Whiteboard

Definition

Let $f: A \to B$. The **graph** of f is the set

```
\left\{\,(a,b)\mid a\in A \text{ and } f(a)=b\,\right\}.
```

Example

Whiteboard

Remarks

• Graphs of functions and polymorphic functions

Definition

Let $f: A \to B$. The **graph** of f is the set

```
\{ (a,b) \mid a \in A \text{ and } f(a) = b \}.
```

Example

Whiteboard

Remarks

- Graphs of functions and polymorphic functions
- Graphs of functions and programs

Definition

Let $f : A \to B$. The **graph** of f is the set

```
\{ (a,b) \mid a \in A \text{ and } f(a) = b \}.
```

Example

Whiteboard

Remarks

- Graphs of functions and polymorphic functions
- Graphs of functions and programs
- Partial and total functions

References

Rosen, K. H. (2004). *Matemática Discreta y sus Aplicaciones*. 5th ed. Translated by José Manuel Pérez Morales and others. McGraw-Hill (cit. on p. 2).
(2012). Discrete Mathematics and Its Applications. 7th ed. McGraw-Hill (cit. on pp. 5, 34, 37, 40).