CM0246 Discrete Structures Equivalence Relations

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Introduction

Equivalence relations split sets into disjoint classes of equivalent elements. ${ }^{\dagger}$

${ }^{\dagger}$ Figure source: (Rosen 2012, § 9.5, Fig. 1).

Equivalence Relations

Definition

A relation on a set A is an equivalence relation iff it is reflexive, symmetric and transitive.

Equivalence Relations

Definition

A relation on a set A is an equivalence relation iff it is reflexive, symmetric and transitive.

Example (words of the same length)

$$
\begin{aligned}
\Sigma & =\{a, b, \ldots, z\} \\
\Sigma^{*} & =\{w \mid w \text { is a word on } \Sigma\} \\
R & =\left\{\left(w, w^{\prime}\right) \mid l(w)=l\left(w^{\prime}\right)\right\} \subseteq \Sigma^{*} \times \Sigma^{*}
\end{aligned}
$$

Equivalence Relations

Exercise

Let $A=\{a, e, i, o, u\}$. Is the equality relation on A an equivalence relation?

Equivalence Relations

Exercise

Let $A=\{a, e, i, o, u\}$. Is the equality relation on A an equivalence relation?

Exercise

Let $A \neq \emptyset$ be a set. Are the relations \emptyset and $A \times A$ equivalence relations?

Equivalence Relations

Exercise

Let $A=\{a, e, i, o, u\}$. Is the equality relation on A an equivalence relation?

Exercise

Let $A \neq \emptyset$ be a set. Are the relations \emptyset and $A \times A$ equivalence relations?
Example

$$
\begin{aligned}
\mathrm{FUN} & =\{f \mid f:\{0,1\} \rightarrow\{0,1\}\} \\
R & =\{(f, g) \mid f(1)=g(1)\} \subseteq \mathrm{FUN} \times \mathrm{FUN}
\end{aligned}
$$

Equivalence Relations

Exercise
 Let A be a unitary set. It is possible to define an equivalence relation on A ?

Equivalence Relations

Exercise

Let A be a unitary set. It is possible to define an equivalence relation on A ?
Exercise
Define an equivalence relation on a finite/infinite set.

Equivalence Relations

Definition

Let m and n be integers and let d be a positive integer. The number m is congruent to n modulo d, denoted by $m \equiv n(\bmod d)$, iff $d \mid(m-n)$.

Equivalence Relations

Definition

Let m and n be integers and let d be a positive integer. The number m is congruent to n modulo d, denoted by $m \equiv n(\bmod d)$, iff $d \mid(m-n)$.

Example

The congruence relation is an equivalence relation.

Equivalence Classes

Definition

Let R be an equivalence relation on a set A. The equivalence class of $a \in A$ with respect to R is defined by

$$
[a]_{R}=\{s \in A \mid(a, s) \in R\} .
$$

Equivalence Classes

Definition

Let R be an equivalence relation on a set A. The equivalence class of $a \in A$ with respect to R is defined by

$$
[a]_{R}=\{s \in A \mid(a, s) \in R\} .
$$

Notation: We remove the subscript R if the relation R is clear in the context.

Equivalence Classes

Definition

Let R be an equivalence relation on a set A. The equivalence class of $a \in A$ with respect to R is defined by

$$
[a]_{R}=\{s \in A \mid(a, s) \in R\} .
$$

Notation: We remove the subscript R if the relation R is clear in the context.

Example (Words of the same length)

$$
\begin{aligned}
{[\lambda] } & =\{\lambda\} \\
{[a] } & =\{a, b, \ldots, z\}=[k] \\
{[a a] } & =\{a a, a b, \ldots, a z, b a, b b, \ldots, b z, \ldots z a, \ldots z z\}, \\
{[h g b j] } & =\{w \mid l(w)=4\} .
\end{aligned}
$$

Equivalence Classes

Example (equality relation)

Whiteboard.

Equivalence Classes

Example (equality relation)
Whiteboard.
Example (Cartesian product)
Whiteboard.

Equivalence Relations

Theorem
Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$
a R b \Rightarrow[a]=[b] .
$$

Equivalence Relations

Theorem
Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$
a R b \Rightarrow[a]=[b] .
$$

Proof.
i) $a R b \Rightarrow[a] \subseteq[b]$

Equivalence Relations

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$
a R b \Rightarrow[a]=[b] .
$$

Proof.
i) $a R b \Rightarrow[a] \subseteq[b]$
$1 a R b$.
(hypothesis)
2 Let $c \in[a]$.
$3 a R c$.
(def. of $[a]$)
4 bRa.
(R is symmetric)
5 bRc.
(R is transitive)
$6 \quad c \in[b]$.
(def. of $[b]$)
7 Therefore $[a] \subseteq[b]$.

Equivalence Relations

Theorem
Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$
a R b \Rightarrow[a]=[b] .
$$

Equivalence Relations

Theorem
Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$
a R b \Rightarrow[a]=[b] .
$$

Proof.
ii) $a R b \Rightarrow[b] \subseteq[a]$

Equivalence Relations

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$
a R b \Rightarrow[a]=[b] .
$$

Proof.
ii) $a R b \Rightarrow[b] \subseteq[a]$
$1 a R b$.
(hypothesis)
2 Let $c \in[b]$.
3 bRc.
(def. of $[b]$)
$4 a R c$.
(R is transitive)
$5 c \in[a]$.
(def. of $[a]$)
6 Therefore $[b] \subseteq[a]$.

Equivalence Relations

Theorem
Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$
[a]=[b] \Rightarrow[a] \cap[b] \neq \emptyset .
$$

Equivalence Relations

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$
[a]=[b] \Rightarrow[a] \cap[b] \neq \emptyset .
$$

Proof.
$1 \quad[a]=[b]$. (hypothesis)
$2[a]=\{a, \ldots\}$.
(R is reflexive)

3 Therefore $[a] \cap[b] \neq \emptyset$.

Equivalence Relations

Theorem
Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$
[a] \cap[b] \neq \emptyset \Rightarrow a R b
$$

Equivalence Relations

Theorem
Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$
[a] \cap[b] \neq \emptyset \Rightarrow a R b .
$$

Proof.
$1 \quad[a] \cap[b] \neq \emptyset$.
(hypothesis)

2 Let c such that $c \in[a]$ and $c \in[b]$.
$3 a R c$ y $b R c$.
(def. of $[a]$ and $[b]$)
$4 c R b$.
(R is symmetric)
5 Therefore $a R b$.
(R is transitive)

Equivalence Relations

Theorem 1 (p. 476)
Let R be an equivalence relation on a set A. For all $a, b \in A$, the following statements are equivalent:

$$
\begin{gather*}
a R b, \tag{1}\\
{[a]=[b],} \tag{2}\\
{[a] \cap[b] \neq \emptyset .} \tag{3}
\end{gather*}
$$

Proof.
(1) \Rightarrow (2) (previous theorem),
(2) \Rightarrow (3) (previous theorem) and
$(3) \Rightarrow(1)$ (previous theorem).

Equivalence Relations and Partitions

Definition

A partition of a set A is a collection of subsets $\left\{A_{i} \mid i \in I\right\}$ of A such that: ${ }^{\dagger}$
i) $A_{i} \neq \emptyset$, for $i \in I$,
ii) $A_{i} \cap A_{j}=\emptyset$ when $i \neq j$ (disjoint subsets) and
iii) $\bigcup_{i \in I} A_{i}=A$.

Equivalence Relations and Partitions

Theorem 2 (p. 477)
Let R be an equivalence relation on a set A. Then the equivalence classes of R form a partition of A.

Proof.
The collection of subsets is given by

$$
\left\{A_{[a]_{R}} \mid[a]_{R} \text { is an equivalence class respect to } R\right\} \text {. }
$$

Using the above collection, the conditions i), ii) and iii) are satisfied.

Equivalence Relations and Partitions

Theorem 2 (Rosen (5th ed.), p. 477)
Given a partition $\left\{A_{i} \mid i \in I\right\}$ of a set A, there is an equivalence relation R that has the sets A_{i} as its equivalence classes.

Equivalence Relations and Partitions

Theorem 2 (Rosen (5th ed.), p. 477)
Given a partition $\left\{A_{i} \mid i \in I\right\}$ of a set A, there is an equivalence relation R that has the sets A_{i} as its equivalence classes.

Example

Given a partition to build the equivalence relation associated.

Equivalence Relations and Partitions

Proof.
Let R be the relation defined by

$$
R=\left\{(a, b) \mid a, b \in A_{i}\right\}
$$

R is a relation of equivalence:

Equivalence Relations and Partitions

Proof.
Let R be the relation defined by

$$
R=\left\{(a, b) \mid a, b \in A_{i}\right\} .
$$

R is a relation of equivalence:

- Reflexivity and symmetry

Direct from the definition of R.
Continued on next slide

Equivalence Relations and Partitions

Proof (continuation).

$$
R=\left\{(a, b) \mid a, b \in A_{i}\right\} .
$$

- Transitivity

1) $a R b$ and $b R c$.
2) Exists $X \in\left\{A_{i} \mid i \in I\right\}$ such that $a, b \in X$ by definition of R.
3) Exists $Y \in\left\{A_{i} \mid i \in I\right\}$ such that $b, c \in Y$ by definition of R.
4) $X=Y$ because $b \in X$ and $b \in Y$ and the $A_{i} \mathrm{~s}$ are disjoints.
5) $\quad a R c(a, c \in X$ and def. of $R)$.

Equivalence Relations and Partitions

Proof (continuation).

$$
R=\left\{(a, b) \mid a, b \in A_{i}\right\} .
$$

- Transitivity

1) $a R b$ and $b R c$.
2) Exists $X \in\left\{A_{i} \mid i \in I\right\}$ such that $a, b \in X$ by definition of R.
3) Exists $Y \in\left\{A_{i} \mid i \in I\right\}$ such that $b, c \in Y$ by definition of R.
4) $X=Y$ because $b \in X$ and $b \in Y$ and the $A_{i} \mathrm{~s}$ are disjoints.
5) $a R c(a, c \in X$ and def. of $R)$.

Now, $[a]_{R}=\{s \mid(a, s) \in R\}$ and by the definition of the relation R, these equivalence classes correspond to the sets A_{i}.

References

Rosen, K. H. (2004). Matemática Discreta y sus Aplicaciones. 5th ed. Translated by José Manuel Pérez Morales and others. McGraw-Hill (cit. on p. 2).

- (2012). Discrete Mathematics and Its Applications. 7th ed. McGrawHill (cit. on pp. 3, 29).

