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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, sections,
and theorems on these slides correspond to the numbers assigned in the
textbook (Rosen 2004).
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Introduction
Equivalence relations split sets into disjoint classes of equivalent elements.†9.5 Equivalence Relations 613
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FIGURE 1 A Partition of a Set.

and

⋃

i∈I
Ai = S.

(Here the notation
⋃

i∈I Ai represents the union of the sets Ai for all i ∈ I .) Figure 1 illustrates
the concept of a partition of a set.

EXAMPLE 12 Suppose that S = {1, 2, 3, 4, 5, 6}. The collection of sets A1 = {1, 2, 3}, A2 = {4, 5}, and
A3 = {6} forms a partition of S, because these sets are disjoint and their union is S. ▲

We have seen that the equivalence classes of an equivalence relation on a set form a partition
of the set. The subsets in this partition are the equivalence classes. Conversely, every partition
of a set can be used to form an equivalence relation. Two elements are equivalent with respect
to this relation if and only if they are in the same subset of the partition.

To see this, assume that {Ai | i ∈ I } is a partition on S. Let R be the relation on S consisting
of the pairs (x, y), where x and y belong to the same subset Ai in the partition. To show that R

is an equivalence relation we must show that R is reflexive, symmetric, and transitive.
We see that (a, a) ∈ R for every a ∈ S, because a is in the same subset as itself. Hence, R

is reflexive. If (a, b) ∈ R, then b and a are in the same subset of the partition, so that (b, a) ∈ R

as well. Hence, R is symmetric. If (a, b) ∈ R and (b, c) ∈ R, then a and b are in the same
subset X in the partition, and b and c are in the same subset Y of the partition. Because the subsets
of the partition are disjoint and b belongs to X and Y , it follows that X = Y . Consequently, a

and c belong to the same subset of the partition, so (a, c) ∈ R. Thus, R is transitive.
It follows that R is an equivalence relation. The equivalence classes of R consist of subsets

of S containing related elements, and by the definition of R, these are the subsets of the partition.
Theorem 2 summarizes the connections we have established between equivalence relations and
partitions.

THEOREM 2 Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition
of S. Conversely, given a partition {Ai | i ∈ I } of the set S, there is an equivalence relation
R that has the sets Ai , i ∈ I , as its equivalence classes.

Example 13 shows how to construct an equivalence relation from a partition.

EXAMPLE 13 List the ordered pairs in the equivalence relation R produced by the partition A1 = {1, 2, 3},
A2 = {4, 5}, and A3 = {6} of S = {1, 2, 3, 4, 5, 6}, given in Example 12.

†Figure source: (Rosen 2012, § 9.5, Fig. 1).
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Equivalence Relations

Definition
A relation on a set A is an equivalence relation iff it is reflexive, symmetric
and transitive.

Example (words of the same length)

Σ = {a, b, . . . , z},

Σ∗ = { w | w is a word on Σ } ,

R =
{

(w, w′) | l(w) = l(w′)
}

⊆ Σ∗ × Σ∗.
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Equivalence Relations

Exercise
Let A = {a, e, i, o, u}. Is the equality relation on A an equivalence relation?

Exercise
Let A ̸= ∅ be a set. Are the relations ∅ and A × A equivalence relations?

Example

FUN = { f | f : {0, 1} → {0, 1} } ,

R = { (f, g) | f(1) = g(1) } ⊆ FUN × FUN.
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Equivalence Relations

Exercise
Let A be a unitary set. It is possible to define an equivalence relation on A?

Exercise
Define an equivalence relation on a finite/infinite set.
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Equivalence Relations

Definition
Let m and n be integers and let d be a positive integer. The number m is
congruent to n modulo d, denoted by m ≡ n (mod d), iff d | (m − n).

Example
The congruence relation is an equivalence relation.
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Equivalence Classes

Definition
Let R be an equivalence relation on a set A. The equivalence class of
a ∈ A with respect to R is defined by

[a]R = { s ∈ A | (a, s) ∈ R } .

Notation: We remove the subscript R if the relation R is clear in the
context.

Example (Words of the same length)

[λ] = {λ},

[a] = {a, b, . . . , z} = [k],
[aa] = {aa, ab, . . . , az, ba, bb, . . . , bz, . . . za, . . . zz},

[hgbj] = { w | l(w) = 4 } .
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Equivalence Classes

Example (equality relation)
Whiteboard.

Example (Cartesian product)
Whiteboard.
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Equivalence Relations

Theorem
Let R be an equivalence relation on a set A. For all a, b ∈ A,

aRb ⇒ [a] = [b].

Proof.
i) aRb ⇒ [a] ⊆ [b]
1 aRb. (hypothesis)
2 Let c ∈ [a].
3 aRc. (def. of [a])
4 bRa. (R is symmetric)
5 bRc. (R is transitive)
6 c ∈ [b]. (def. of [b])
7 Therefore [a] ⊆ [b].
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Theorem
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Equivalence Relations

Theorem
Let R be an equivalence relation on a set A. For all a, b ∈ A,

[a] = [b] ⇒ [a] ∩ [b] ̸= ∅.

Proof.

1 [a] = [b]. (hypothesis)
2 [a] = {a, . . .}. (R is reflexive)
3 Therefore [a]∩ [b] ̸= ∅.
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Equivalence Relations

Theorem 1 (p. 476)
Let R be an equivalence relation on a set A. For all a, b ∈ A, the following
statements are equivalent:

aRb, (1)

[a] = [b], (2)

[a] ∩ [b] ̸= ∅. (3)

Proof.
(1) ⇒ (2) (previous theorem),
(2) ⇒ (3) (previous theorem) and
(3) ⇒ (1) (previous theorem).
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Equivalence Relations and Partitions

Definition
A partition of a set A is a collection of subsets { Ai | i ∈ I } of A such that:†

i) Ai ̸= ∅, for i ∈ I,
ii) Ai ∩ Aj = ∅ when i ̸= j (disjoint subsets) and
iii)

⋃
i∈I Ai = A. 9.5 Equivalence Relations 613
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Equivalence Relations and Partitions

Theorem 2 (p. 477)
Let R be an equivalence relation on a set A. Then the equivalence classes
of R form a partition of A.

Proof.
The collection of subsets is given by{

A[a]R

∣∣∣ [a]R is an equivalence class respect to R
}

.

Using the above collection, the conditions i), ii) and iii) are satisfied.
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Equivalence Relations and Partitions

Theorem 2 (Rosen (5th ed.), p. 477)
Given a partition { Ai | i ∈ I } of a set A, there is an equivalence relation R
that has the sets Ai as its equivalence classes.

Example
Given a partition to build the equivalence relation associated.
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Equivalence Relations and Partitions

Proof.
Let R be the relation defined by

R = { (a, b) | a, b ∈ Ai } .

R is a relation of equivalence:

Reflexivity and symmetry

Direct from the definition of R.

Continued on next slide
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Equivalence Relations and Partitions

Proof (continuation).

R = { (a, b) | a, b ∈ Ai } .

Transitivity
1) aRb and bRc.
2) Exists X ∈ { Ai | i ∈ I } such that a, b ∈ X by definition of R.
3) Exists Y ∈ { Ai | i ∈ I } such that b, c ∈ Y by definition of R.
4) X = Y because b ∈ X and b ∈ Y and the Ais are disjoints.
5) aRc (a, c ∈ X and def. of R).

Now, [a]R = { s | (a, s) ∈ R } and by the definition of the relation R, these
equivalence classes correspond to the sets Ai.
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