CM0246 Discrete Structures Equivalence Relations

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Introduction

Equivalence relations split sets into disjoint classes of equivalent elements.[†]

[†]Figure source: (Rosen 2012, § 9.5, Fig. 1).

Definition

A relation on a set A is an **equivalence relation** iff it is reflexive, symmetric and transitive.

Definition

A relation on a set A is an **equivalence relation** iff it is reflexive, symmetric and transitive.

Example (words of the same length)

$$\Sigma = \{a, b, \dots, z\},$$

$$\Sigma^* = \{w \mid w \text{ is a word on } \Sigma\},$$

$$R = \{ (w, w') \mid l(w) = l(w') \} \subseteq \Sigma^* \times \Sigma^*.$$

Exercise

Let $A = \{a, e, i, o, u\}$. Is the equality relation on A an equivalence relation?

Exercise

Let $A = \{a, e, i, o, u\}$. Is the equality relation on A an equivalence relation?

Exercise

Let $A \neq \emptyset$ be a set. Are the relations \emptyset and $A \times A$ equivalence relations?

Exercise

Let $A = \{a, e, i, o, u\}$. Is the equality relation on A an equivalence relation?

Exercise

Let $A \neq \emptyset$ be a set. Are the relations \emptyset and $A \times A$ equivalence relations?

Example

$$FUN = \{ f \mid f : \{0, 1\} \to \{0, 1\} \},\$$
$$R = \{ (f, g) \mid f(1) = g(1) \} \subseteq FUN \times FUN.$$

Exercise

Let A be a unitary set. It is possible to define an equivalence relation on A?

Exercise

Let A be a unitary set. It is possible to define an equivalence relation on A?

Exercise

Define an equivalence relation on a finite/infinite set.

Definition

Let m and n be integers and let d be a positive integer. The number m is congruent to n modulo d, denoted by $m \equiv n \pmod{d}$, iff $d \mid (m - n)$.

Definition

Let m and n be integers and let d be a positive integer. The number m is congruent to n modulo d, denoted by $m \equiv n \pmod{d}$, iff $d \mid (m - n)$.

Example

The congruence relation is an equivalence relation.

Definition

Let R be an equivalence relation on a set A. The **equivalence class** of $a \in A$ with respect to R is defined by

$$[a]_{R} = \{ s \in A \mid (a, s) \in R \}.$$

Definition

Let R be an equivalence relation on a set A. The **equivalence class** of $a \in A$ with respect to R is defined by

$$[a]_{R} = \{ s \in A \mid (a, s) \in R \}.$$

Notation: We remove the subscript R if the relation R is clear in the context.

Definition

Let R be an equivalence relation on a set A. The **equivalence class** of $a \in A$ with respect to R is defined by

$$[a]_R = \{ s \in A \mid (a, s) \in R \}.$$

Notation: We remove the subscript R if the relation R is clear in the context.

Example (Words of the same length)

$$\begin{split} [\lambda] &= \{\lambda\}, \\ [a] &= \{a, b, \dots, z\} = [k], \\ [aa] &= \{aa, ab, \dots, az, ba, bb, \dots, bz, \dots za, \dots zz\}, \\ [hgbj] &= \{w \mid l(w) = 4\}. \end{split}$$

Example (equality relation) Whiteboard.

Example (equality relation) Whiteboard.

Example (Cartesian product) Whiteboard.

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

 $aRb \Rightarrow [a] = [b].$

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$aRb \Rightarrow [a] = [b].$$

Proof.

i) $aRb \Rightarrow [a] \subseteq [b]$

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

```
aRb \Rightarrow [a] = [b].
```

(hypothesis)

Proof.

- i) $aRb \Rightarrow [a] \subseteq [b]$
- $1 \quad aRb.$
- 2 Let $c \in [a]$.
- $3 \quad aRc.$
- $4 \quad bRa.$
- 5 bRc.
- $6 \quad c \in [b].$
- 7 Therefore $[a] \subseteq [b]$.

(def. of [a]) (R is symmetric) (R is transitive) (def. of [b])

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

```
aRb \Rightarrow [a] = [b].
```

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$aRb \Rightarrow [a] = [b].$$

Proof.

ii) $aRb \Rightarrow [b] \subseteq [a]$

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

```
aRb \Rightarrow [a] = [b].
```

Proof.

- ii) $aRb \Rightarrow [b] \subseteq [a]$
- $1 \quad aRb.$
- 2 Let $c \in [b]$.
- $3 \ bRc.$
- 4 aRc.
- 5 $c \in [a]$.
- 6 Therefore $[b] \subseteq [a]$.

(hypothesis)

(def. of [b]) (R is transitive) (def. of [a])

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

$$[a] = [b] \Rightarrow [a] \cap [b] \neq \emptyset.$$

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

```
[a] = [b] \Rightarrow [a] \cap [b] \neq \emptyset.
```

Proof.

- 1 [a] = [b]. (hypothesis)
- $2 \quad [a] = \{a, \ldots\}.$
- 3 Therefore $[a] \cap [b] \neq \emptyset$.

(hypothesis) (*R* is reflexive) Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

 $[a] \cap [b] \neq \emptyset \Rightarrow aRb.$

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$,

```
[a] \cap [b] \neq \emptyset \Rightarrow aRb.
```

Proof.

- $1 \quad [a] \cap [b] \neq \emptyset.$
- 2 Let c such that $c \in [a]$ and $c \in [b]$.
- 3 $aRc \ y \ bRc$.
- 4 cRb.
- 5 Therefore aRb.

(hypothesis)

(def. of [a] and [b]) (R is symmetric) (R is transitive)

Theorem 1 (p. 476)

Let R be an equivalence relation on a set A. For all $a, b \in A$, the following statements are equivalent:

$$aRb,$$
 (1)

$$[a] = [b], \tag{2}$$

$$[a] \cap [b] \neq \emptyset. \tag{3}$$

Proof.

Definition

A **partition** of a set A is a collection of subsets $\{A_i \mid i \in I\}$ of A such that:[†]

i)
$$A_i \neq \emptyset$$
, for $i \in I$,
ii) $A_i \cap A_j = \emptyset$ when $i \neq j$ (disjoint subsets) and
iii) $\bigcup_{i \in I} A_i = A$.

[†]Figure source: (Rosen 2012, § 9.5, Fig. 1).

Theorem 2 (p. 477)

Let R be an equivalence relation on a set A. Then the equivalence classes of R form a partition of A.

Proof.

The collection of subsets is given by

$$\left\{ \left. A_{[a]_R} \right| \, [a]_R \text{ is an equivalence class respect to } R \right\}.$$

Using the above collection, the conditions i), ii) and iii) are satisfied.

Theorem 2 (Rosen (5th ed.), p. 477)

Given a partition $\{A_i \mid i \in I\}$ of a set A, there is an equivalence relation R that has the sets A_i as its equivalence classes.

Theorem 2 (Rosen (5th ed.), p. 477)

Given a partition $\{A_i \mid i \in I\}$ of a set A, there is an equivalence relation R that has the sets A_i as its equivalence classes.

Example

Given a partition to build the equivalence relation associated.

Proof.

Let ${\boldsymbol R}$ be the relation defined by

$$R = \{ (a, b) \mid a, b \in A_i \}.$$

R is a relation of equivalence:

Proof.

Let ${\boldsymbol R}$ be the relation defined by

$$R = \{ (a, b) \mid a, b \in A_i \}.$$

 ${\boldsymbol R}$ is a relation of equivalence:

• Reflexivity and symmetry

Direct from the definition of R.

Continued on next slide

Proof (continuation).

$$R = \{ (a, b) \mid a, b \in A_i \}.$$

- Transitivity
 - 1) aRb and bRc.
 - 2) Exists $X \in \{A_i \mid i \in I\}$ such that $a, b \in X$ by definition of R.
 - 3) Exists $Y \in \{A_i \mid i \in I\}$ such that $b, c \in Y$ by definition of R.
 - 4) X = Y because $b \in X$ and $b \in Y$ and the A_i s are disjoints.
 - 5) $aRc (a, c \in X \text{ and def. of } R)$.

Proof (continuation).

$$R = \{ (a, b) \mid a, b \in A_i \}.$$

- Transitivity
 - 1) aRb and bRc.
 - 2) Exists $X \in \{A_i \mid i \in I\}$ such that $a, b \in X$ by definition of R.
 - 3) Exists $Y \in \{A_i \mid i \in I\}$ such that $b, c \in Y$ by definition of R.
 - 4) X = Y because $b \in X$ and $b \in Y$ and the A_i s are disjoints.
 - 5) $aRc (a, c \in X \text{ and def. of } R)$.

Now, $[a]_R = \{ s \mid (a, s) \in R \}$ and by the definition of the relation R, these equivalence classes correspond to the sets A_i .

References

Rosen, K. H. (2004). *Matemática Discreta y sus Aplicaciones*. 5th ed. Translated by José Manuel Pérez Morales and others. McGraw-Hill (cit. on p. 2).
(2012). Discrete Mathematics and Its Applications. 7th ed. McGraw-Hill (cit. on pp. 3, 29).