CM0246 Discrete Structures Cardinality

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2014-2

Definition

Let A be a finite set. The number of (distinct) elements in A, denoted |A|, is called the **cardinality** of A.

Cardinality 2/31

Definition

Let A be a finite set. The number of (distinct) elements in A, denoted |A|, is called the **cardinality** of A.

Definition

Let A and B be finite or infinite sets. The sets A and B have the **same** cardinality, if and only, there is a bijection from A to B.

Cardinality 3/31

Definition

Let A be a finite set. The number of (distinct) elements in A, denoted |A|, is called the **cardinality** of A.

Definition

Let A and B be finite or infinite sets. The sets A and B have the **same** cardinality, if and only, there is a bijection from A to B.

Injunction, surjection or bijection?

Draw figures in the whiteboard.

Cardinality 4/31

Example

(Proofs on the whiteboard)

•
$$|\mathbb{Z}^+| = |\mathbb{N}|$$
.

Cardinality 5/31

Example

(Proofs on the whiteboard)

- $|\mathbb{Z}^+| = |\mathbb{N}|$.
- $|\mathbb{N}| = |\text{Even}|$, where $\text{Even} = \{ 2n \mid n \in \mathbb{N} \}$.

Cardinality 6/31

Example

(Proofs on the whiteboard)

- $|\mathbb{Z}^+| = |\mathbb{N}|$.
- $|\mathbb{N}| = |\text{Even}|$, where $\text{Even} = \{ 2n \mid n \in \mathbb{N} \}$.
- $|\mathbb{N}| = |M_k|$, where M_k is the set of the non-negative multiples of $k \in \mathbb{Z}^+$, i.e. $M_k = \{ nk \mid n \in \mathbb{N} \}$.

Cardinality 7/31

Example

(Proofs on the whiteboard)

- $|\mathbb{Z}^+| = |\mathbb{N}|$.
- $|\mathbb{N}| = |\text{Even}|$, where $\text{Even} = \{ 2n \mid n \in \mathbb{N} \}$.
- $|\mathbb{N}| = |M_k|$, where M_k is the set of the non-negative multiples of $k \in \mathbb{Z}^+$, i.e. $M_k = \{ nk \mid n \in \mathbb{N} \}$.
- ullet |[0,1]| = |[a,b]|, where $a,b \in \mathbb{R}$ and a < b.

Cardinality 8/31

 $(1872 - 1970)^{\dagger}$

'The possibility that whole and part may have the same number of terms is, it must be confessed, shocking to commonsense.' (Russell 1903, p. 358)

Cardinality 9/31

[†]Image from the MacTutor History of Mathematics Archive.

Example (Lipschutz (1998), Solved problem 6.2, p. 153) Show that |[0,1]|=|(0,1)|.

Cardinality 10/31

Example (Lipschutz (1998), Solved problem 6.2, p. 153)

Show that |[0,1]| = |(0,1)|.

Solution

Note that

$$[0,1] = \{0,1,1/2,1/3,1/4,\ldots\} \cup A$$
$$(0,1) = \{1/2,1/3,1/4,\ldots\} \cup A$$

where

$$A = [0, 1] - \{0, 1, 1/2, 1/3, 1/4, \ldots\}$$

= $(0, 1) - \{1/2, 1/3, 1/4, \ldots\}.$

Cardinality 11/31

Solution (continuation)

From the figure † we define the bijective function $f:[0,1] \rightarrow (0,1)$ by

$$f(x) = \begin{cases} 1/2, & \text{if } x = 0; \\ 1/(n+1), & \text{if } x = 1/n \text{ where } n \in \mathbb{Z}^+; \\ x, & \text{otherwise.} \end{cases}$$

Cardinality 12/31

[†]Figure source: (Lipschutz 1998, Fig. 6.5).

Exercise

Let A and B be sets. Show $|A \times B| = |B \times A|$.

Cardinality 13/31

Question

Has all the infinite sets the same cardinality?

Cardinality 14/31

Question

Has all the infinite sets the same cardinality?

Definition

A set that is either finite or has the same cardinality as the set of positive integers is called **enumerable** (or **countable**).

Cardinality 15/31

Question

Has all the infinite sets the same cardinality?

Definition

A set that is either finite or has the same cardinality as the set of positive integers is called **enumerable** (or **countable**).

Definition

A set that is not enumerable (not countable) is called **non-enumerable** (or **uncountable**).

Cardinality 16/31

Question

Has all the infinite sets the same cardinality?

Definition

A set that is either finite or has the same cardinality as the set of positive integers is called **enumerable** (or **countable**).

Definition

A set that is not enumerable (not countable) is called **non-enumerable** (or **uncountable**).

Example

Whiteboard.

Cardinality 17/31

Example (the positive rational numbers are enumerable[†])

Remark: We do not define explicitly the function, but a method (program) for enumerating the set.

Cardinality 18/31

[†]Figure source: (Rosen 2012, § 2.5, Fig. 3).

Theorem

The interval $\left(0,1\right)$ is non-enumerable.

Proved on next slide

Cardinality 19/31

Proof.

Let's suppose (0,1) is enumerable.

$$r_1 = 0.d_{11}d_{12}d_{13}d_{14}\dots$$

$$r_2 = 0.d_{21}d_{22}d_{23}d_{24}\dots$$

$$r_3 = 0.d_{31}d_{32}d_{33}d_{34}\dots$$

$$\vdots$$

Cardinality 20/31

Proof.

Let's suppose (0,1) is enumerable.

$$r_1 = 0.d_{11}d_{12}d_{13}d_{14} \dots$$

$$r_2 = 0.d_{21}d_{22}d_{23}d_{24} \dots$$

$$r_3 = 0.d_{31}d_{32}d_{33}d_{34} \dots$$

$$\vdots$$

Let $r = 0.d_1d_2d_3\ldots \in (0,1)$, where

$$d_i = \begin{cases} 4, & \text{if } d_{ii} \neq 4; \\ 5, & \text{if } d_{ii} = 4. \end{cases}$$

Cardinality 21/31

Proof.

Let's suppose (0,1) is enumerable.

$$r_1 = 0.d_{11}d_{12}d_{13}d_{14} \dots$$

$$r_2 = 0.d_{21}d_{22}d_{23}d_{24} \dots$$

$$r_3 = 0.d_{31}d_{32}d_{33}d_{34} \dots$$

$$\vdots$$

Let $r = 0.d_1d_2d_3... \in (0,1)$, where

$$d_i = \begin{cases} 4, & \text{if } d_{ii} \neq 4; \\ 5, & \text{if } d_{ii} = 4. \end{cases}$$

The number r does not belong to the above enumeration. Therefore (0,1) is non-enumerable.

Cardinality 22/31

Theorem

Let A and B be sets such that $A \subseteq B$. If A is non-enumerable then B is non-enumerable.

Cardinality 23/31

Theorem

The set of the real numbers is non-enumerable.

Cardinality 24/31

Theorem

The set of the real numbers is non-enumerable.

Proof.

The interval (0,1) is a non-enumerable subset of $\mathbb R$. Therefore (using a previous theorem), $\mathbb R$ is non-enumerable.

Cardinality 25/31

Theorem

The set of the real numbers is non-enumerable.

Proof.

The interval (0,1) is a non-enumerable subset of \mathbb{R} . Therefore (using a previous theorem), \mathbb{R} is non-enumerable.

Remark

Comment about the continuum hypothesis.

Cardinality 26/31

Remark

The quadratic formulae are the solution to the quadratic equation

$$ax^2 + bx + c = 0.$$

Two quadratic formulae are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

and

$$x = \frac{-2c}{b \mp \sqrt{b^2 - 4ac}}. (1)$$

Cardinality 27/31

Example

Show that $|(-1,1)| = |\mathbb{R}|$.

Cardinality 28/31

Example

Show that $|(-1,1)| = |\mathbb{R}|$.

Solution

The function $f:(-1,1)\to\mathbb{R}$ defined by

$$f(x) = \frac{x}{1 - x^2}$$

has as inverse the function $f^{-1}: \mathbb{R} \to (-1,1)$ given by (obtained using the quadratic formula (1))

$$f^{-1}(x) = \frac{2x}{1 + \sqrt{1 + 4x^2}}.$$

Cardinality 29/31

Solution (continuation)

Since the function f is a bijection then $|(-1,1)| = |\mathbb{R}|$. Source: Munkres (2000, Example § 18.5).

Cardinality 30/31

References

Lipschutz, S. (1998). Schaum's Outline of Theory and Problems of Set Theory and Related Topics. 2nd ed. McGraw-Hill (cit. on pp. 10-12).

Munkres, J. R. (2000). Topology. 2nd ed. Prentice Hall (cit. on p. 30).

Russell, B. (1903). The Principles of Mathematics. W. W. Norton & Company, Inc (cit. on p. 9).

Cardinality 31/31