CM0246 Discrete Structures Cardinality

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2014-2

Cardinality

Definition

Let A be a finite set. The number of (distinct) elements in A, denoted $|A|$, is called the cardinality of A.

Cardinality

Definition

Let A be a finite set. The number of (distinct) elements in A, denoted $|A|$, is called the cardinality of A.

Definition

Let A and B be finite or infinite sets. The sets A and B have the same cardinality, if and only, there is a bijection from A to B.

Cardinality

Definition

Let A be a finite set. The number of (distinct) elements in A, denoted $|A|$, is called the cardinality of A.

Definition

Let A and B be finite or infinite sets. The sets A and B have the same cardinality, if and only, there is a bijection from A to B.

Injunction, surjection or bijection?
Draw figures in the whiteboard.

Cardinality

Example

(Proofs on the whiteboard)

- $\left|\mathbb{Z}^{+}\right|=|\mathbb{N}|$.

Cardinality

Example

(Proofs on the whiteboard)

- $\left|\mathbb{Z}^{+}\right|=|\mathbb{N}|$.
- $|\mathbb{N}|=\mid$ Even \mid, where Even $=\{2 n \mid n \in \mathbb{N}\}$.

Cardinality

Example

(Proofs on the whiteboard)

- $\left|\mathbb{Z}^{+}\right|=|\mathbb{N}|$.
- $|\mathbb{N}|=\mid$ Even \mid, where Even $=\{2 n \mid n \in \mathbb{N}\}$.
- $|\mathbb{N}|=\left|M_{k}\right|$, where M_{k} is the set of the non-negative multiples of $k \in \mathbb{Z}^{+}$, i.e. $M_{k}=\{n k \mid n \in \mathbb{N}\}$.

Cardinality

Example

(Proofs on the whiteboard)

- $\left|\mathbb{Z}^{+}\right|=|\mathbb{N}|$.
- $|\mathbb{N}|=\mid$ Even \mid, where Even $=\{2 n \mid n \in \mathbb{N}\}$.
- $|\mathbb{N}|=\left|M_{k}\right|$, where M_{k} is the set of the non-negative multiples of $k \in \mathbb{Z}^{+}$, i.e. $M_{k}=\{n k \mid n \in \mathbb{N}\}$.
- $|[0,1]|=|[a, b]|$, where $a, b \in \mathbb{R}$ and $a<b$.

Cardinality

'The possibility that whole and part may have the same number of terms is, it must be confessed, shocking to commonsense.' (Russell 1903, p. 358)

[^0]
Cardinality

Example (Lipschutz (1998), Solved problem 6.2, p. 153)
Show that $|[0,1]|=|(0,1)|$.

Cardinality

Example (Lipschutz (1998), Solved problem 6.2, p. 153)
Show that $|[0,1]|=|(0,1)|$.
Solution
Note that

$$
\begin{aligned}
& {[0,1]=\{0,1,1 / 2,1 / 3,1 / 4, \ldots\} \cup A} \\
& (0,1)=\{1 / 2,1 / 3,1 / 4, \ldots\} \cup A
\end{aligned}
$$

where

$$
\begin{aligned}
A & =[0,1]-\{0,1,1 / 2,1 / 3,1 / 4, \ldots\} \\
& =(0,1)-\{1 / 2,1 / 3,1 / 4, \ldots\}
\end{aligned}
$$

Cardinality

Solution (continuation)

From the figure ${ }^{\dagger}$ we define the bijective function $f:[0,1] \rightarrow(0,1)$ by

$$
f(x)= \begin{cases}1 / 2, & \text { if } x=0 \\ 1 /(n+1), & \text { if } x=1 / n \text { where } n \in \mathbb{Z}^{+} \\ x, & \text { otherwise }\end{cases}
$$

${ }^{\dagger}$ Figure source: (Lipschutz 1998, Fig. 6.5).

Cardinality

Exercise

Let A and B be sets. Show $|A \times B|=|B \times A|$.

Enumerable and Non-Enumerable Sets

Question

Has all the infinite sets the same cardinality?

Enumerable and Non-Enumerable Sets

Question

Has all the infinite sets the same cardinality?
Definition
A set that is either finite or has the same cardinality as the set of positive integers is called enumerable (or countable).

Enumerable and Non-Enumerable Sets

Question

Has all the infinite sets the same cardinality?

Definition

A set that is either finite or has the same cardinality as the set of positive integers is called enumerable (or countable).

Definition
A set that is not enumerable (not countable) is called non-enumerable (or uncountable).

Enumerable and Non-Enumerable Sets

Question

Has all the infinite sets the same cardinality?

Definition

A set that is either finite or has the same cardinality as the set of positive integers is called enumerable (or countable).

Definition
A set that is not enumerable (not countable) is called non-enumerable (or uncountable).

Example
Whiteboard.

Enumerable and Non-Enumerable Sets

Example (the positive rational numbers are enumerable ${ }^{\dagger}$)

Remark: We do not define explicitly the function, but a method (program) for enumerating the set.
${ }^{\dagger}$ Figure source: (Rosen 2012, § 2.5, Fig. 3).

Enumerable and Non-Enumerable Sets

Theorem
The interval $(0,1)$ is non-enumerable.
Proved on next slide

Enumerable and Non-Enumerable Sets

Proof.

Let's suppose $(0,1)$ is enumerable.

$$
\begin{aligned}
& r_{1}=0 . d_{11} d_{12} d_{13} d_{14} \cdots \\
& r_{2}=0 . d_{21} d_{22} d_{23} d_{24} \cdots \\
& r_{3}=0 . d_{31} d_{32} d_{33} d_{34} \cdots
\end{aligned}
$$

Enumerable and Non-Enumerable Sets

Proof.

Let's suppose $(0,1)$ is enumerable.

$$
\begin{aligned}
& r_{1}=0 . d_{11} d_{12} d_{13} d_{14} \cdots \\
& r_{2}=0 . d_{21} d_{22} d_{23} d_{24} \cdots \\
& r_{3}=0 . d_{31} d_{32} d_{33} d_{34} \cdots
\end{aligned}
$$

Let $r=0 . d_{1} d_{2} d_{3} \ldots \in(0,1)$, where

$$
d_{i}= \begin{cases}4, & \text { if } d_{i i} \neq 4 \\ 5, & \text { if } d_{i i}=4\end{cases}
$$

Enumerable and Non-Enumerable Sets

Proof.

Let's suppose $(0,1)$ is enumerable.

$$
\begin{aligned}
& r_{1}=0 . d_{11} d_{12} d_{13} d_{14} \cdots \\
& r_{2}=0 . d_{21} d_{22} d_{23} d_{24} \cdots \\
& r_{3}=0 . d_{31} d_{32} d_{33} d_{34} \cdots
\end{aligned}
$$

Let $r=0 . d_{1} d_{2} d_{3} \ldots \in(0,1)$, where

$$
d_{i}= \begin{cases}4, & \text { if } d_{i i} \neq 4 \\ 5, & \text { if } d_{i i}=4\end{cases}
$$

The number r does not belong to the above enumeration. Therefore $(0,1)$ is non-enumerable.

Enumerable and Non-Enumerable Sets

Theorem
Let A and B be sets such that $A \subseteq B$. If A is non-enumerable then B is non-enumerable.

Enumerable and Non-Enumerable Sets

Theorem
The set of the real numbers is non-enumerable.

Enumerable and Non-Enumerable Sets

Theorem
The set of the real numbers is non-enumerable.
Proof.
The interval $(0,1)$ is a non-enumerable subset of \mathbb{R}. Therefore (using a previous theorem), \mathbb{R} is non-enumerable.

Enumerable and Non-Enumerable Sets

Theorem
The set of the real numbers is non-enumerable.
Proof.
The interval $(0,1)$ is a non-enumerable subset of \mathbb{R}. Therefore (using a previous theorem), \mathbb{R} is non-enumerable.

Remark

Comment about the continuum hypothesis.

Enumerable and Non-Enumerable Sets

Remark

The quadratic formulae are the solution to the quadratic equation

$$
a x^{2}+b x+c=0 .
$$

Two quadratic formulae are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

and

$$
\begin{equation*}
x=\frac{-2 c}{b \mp \sqrt{b^{2}-4 a c}} . \tag{1}
\end{equation*}
$$

Enumerable and Non-Enumerable Sets

Example
 Show that $|(-1,1)|=|\mathbb{R}|$.

Enumerable and Non-Enumerable Sets

Example

Show that $|(-1,1)|=|\mathbb{R}|$.
Solution
The function $f:(-1,1) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{x}{1-x^{2}}
$$

has as inverse the function $f^{-1}: \mathbb{R} \rightarrow(-1,1)$ given by (obtained using the quadratic formula (1))

$$
f^{-1}(x)=\frac{2 x}{1+\sqrt{1+4 x^{2}}} .
$$

Enumerable and Non-Enumerable Sets

Solution (continuation)

$$
f(x)=\frac{x}{1-x^{2}}
$$

Since the function f is a bijection then $|(-1,1)|=|\mathbb{R}|$. Source: Munkres (2000, Example § 18.5).

References

Lipschutz, S. (1998). Schaum's Outline of Theory and Problems of Set Theory and Related Topics. 2nd ed. McGraw-Hill (cit. on pp. 10-12). Munkres, J. R. (2000). Topology. 2nd ed. Prentice Hall (cit. on p. 30). Rosen, K. H. (2012). Discrete Mathematics and Its Applications. 7th ed. McGraw-Hill (cit. on p. 18).
Russell, B. (1903). The Principles of Mathematics. W. W. Norton \& Company, Inc (cit. on p. 9).

[^0]: ${ }^{\dagger}$ Image from the MacTutor History of Mathematics Archive.

