TABLE 5 Boolean Identities.

Identity	Name
$\overline{\bar{x}}=x$	Law of the double complement
$\begin{aligned} & x+x=x \\ & x \cdot x=x \end{aligned}$	Idempotent laws
$\begin{aligned} & x+0=x \\ & x \cdot 1=x \end{aligned}$	Identity laws
$\begin{aligned} & x+1=1 \\ & x \cdot 0=0 \end{aligned}$	Domination laws
$\begin{aligned} & x+y=y+x \\ & x y=y x \end{aligned}$	Commutative laws
$\begin{aligned} & x+(y+z)=(x+y)+z \\ & x(y z)=(x y) x \end{aligned}$	Associative laws
$\begin{aligned} & x+y z=(x+y)(x+z) \\ & x(y+z)=x y+x z \end{aligned}$	Distributive laws
$\begin{aligned} & \overline{(x y)}=\bar{x}+\bar{y} \\ & (x+y)=\bar{x} \bar{y} . \end{aligned}$	De Morgan's laws
$\begin{aligned} & x+x y=x \\ & x(x+y)=x \end{aligned}$	Absorption laws
$x+\bar{x}=1$	Unit property
$x \bar{x}=0$	Zero property

The reader should compare the Boolean identities in Table 5 to the logical equivalences in Table 6 of Section 1.2 and the set identities in Table 1 in Section 2.2. All are special cases of the same set of identities in a more abstract structure. Each collection of identities can be obtained by making the appropriate translations. For example, we can transform each of the identities in Table 5 into a logical equivalence by changing each Boolean variable into a propositional variable, each 0 into a \mathbf{F}, each 1 into a T, each Boolean sum into a disjunction, each Boolean product into a conjunction, and each complementation into a negation, as we illustrate in Example 9.

TABLE 6 Verifying One of the Distributive Laws.

x	y	z	$y+z$	$x y$	$x z$	$x(y+z)$	$x y+x z$
1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

