TABLE 5 Boolean Identities.					
Identity	Name				
$\overline{\overline{x}} = x$	Law of the double complement				
x + x = x	Idempotent laws				
$x \cdot x = x$					
x + 0 = x	Identity laws				
$x \cdot 1 = x$					
x + 1 = 1	Domination laws				
$x \cdot 0 = 0$					
x + y = y + x	Commutative laws				
xy = yx					
x + (y + z) = (x + y) + z $x(yz) = (xy)x$	Associative laws				
x + yz = (x + y)(x + z)	Distributive laws				
x(y+z) = xy + xz					
$\overline{(xy)} = \overline{x} + \overline{y}$ $\overline{(x+y)} = \overline{x} \ \overline{y}$	De Morgan's laws				
x + xy = x $x(x + y) = x$	Absorption laws				
$x + \overline{x} = 1$	Unit property				
$x\overline{x} = 0$	Zero property				

The reader should compare the Boolean identities in Table 5 to the logical equivalences in Table 6 of Section 1.2 and the set identities in Table 1 in Section 2.2. All are special cases of the same set of identities in a more abstract structure. Each collection of identities can be obtained by making the appropriate translations. For example, we can transform each of the identities in Table 5 into a logical equivalence by changing each Boolean variable into a propositional variable, each 0 into a **F**, each 1 into a **T**, each Boolean sum into a disjunction, each Boolean product into a conjunction, and each complementation into a negation, as we illustrate in Example 9.

TAB	TABLE 6 Verifying One of the Distributive Laws.								
x	У	z	y + z	xy	xz	x(y+z)	xy + xz		
1	1	1	1	1	1	1	1		
1	1	0	1	1	0	1	1		
1	0	1	1	0	1	1	1		
1	0	0	0	0	0	0	0		
0	1	1	1	0	0	0	0		
0	1	0	1	0	0	0	0		
0	0	1	1	0	0	0	0		
0	0	0	0	0	0	0	0		