Section 3.3
 Complexity of Algorithms

Time Complexity: Determine the approximate number of operations required to solve a problem of size n.

Space Complexity: Determine the approximate memory required to solve a problem of size n.

Time Complexity

- Use the Big-O notation
- Ignore house keeping
- Count the expensive operations only

Basic operations:

- searching algorithms - key comparisons
- sorting algorithms - list component comparisons
- numerical algorithms - floating point ops. (flops) multiplications/divisions and/or additions/subtractions

Worst Case: maximum number of operations
Average Case: mean number of operations assuming an input probability distribution

Examples:

- Multiply an n x n matrix A by a scalar c to produce the matrix B :

procedure ($\mathrm{n}, \mathrm{c}, \mathrm{A}, \mathrm{B}$)
for i from 1 to n do
for j from 1 to n do
$B(i, j)=c A(i, j)$
end do
end do

Analysis (worst case):
Count the number of floating point multiplications.
n^{2} elements requires n^{2} multiplications.
time complexity is

$$
\mathrm{O}\left(\mathrm{n}^{2}\right)
$$

Or
quadratic complexity.

- Multiply an n x n upper triangular matrix A

$$
A(i, j)=0 \text { if } i>j
$$

by a scalar c to produce the (upper triangular) matrix B.

procedure ($\mathrm{n}, \mathrm{c}, \mathrm{A}, \mathrm{B}$)

/* A (and B) are upper triangular */
for i from 1 to n do for j from i to n do
$B(i, j)=c A(i, j)$
end do
end do
Analysis (worst case):
Count the number of floating point multiplications.
The maximum number of non-zero elements in an nx n upper triangular matrix

$$
=1+2+3+4+\ldots+n
$$

or

- remove the diagonal elements (n) from the total (n^{2})
- divide by 2
- add back the diagonal elements to get

$$
\left(\mathrm{n}^{2}-\mathrm{n}\right) / 2+\mathrm{n}=\mathrm{n}^{2} / 2+\mathrm{n} / 2
$$

which is

$$
\mathrm{n}^{2} / 2+\mathrm{O}(\mathrm{n}) .
$$

Quadratic complexity but the leading coefficient is $1 / 2$

- Bubble sort: L is a list of elements to be sorted.
- We assume nothing about the initial order
- The list is in ascending order upon completion.

Analysis (worst case):
Count the number of list comparisons required.
Method: If the jth element of L is larger than the $(j+1) s t$, swap them.

Note: this is not an efficient implementation of the algorithm

```
procedure bubble (n, L)
/*
- L is a list of n elements
- swap is an intermediate swap location
```

for i from $\mathrm{n}-1$ to 1 by -1 do
for j from 1 to i do
if $L(j)>L(j+1)$ do
swap $=L(j+1)$
$L(j+1)=L(j)$
$L(j)=$ swap
end do
end do
end do

```
- Bubble the largest element to the 'top' by starting at the bottom - swap elements until the largest in the top position.
- Bubble the second largest to the position below the top.
- Continue until the list is sorted.
\(\mathrm{n}-1\) comparison on the first pass
\(\mathrm{n}-2\) comparisons on the second pass

1 comparison on the last pass
Total:
\[
(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots+1=\mathrm{O}\left(\mathrm{n}^{2}\right)
\]
or
quadratic complexity
(what is the leading coefficient?)
- An algorithm to determine if a function f from A to \(B\) is an injection:

Input: a table with two columns:
- Left column contains the elements of A.
- Right column contains the images of the elements in the left column.

Analysis (worst case):
Count comparisons of elements of B.
Recall that two elements of column 1 cannot have the same images in column 2.

One solution:
- Sort the right column

Worst case complexity (using Bubble sort)
\[
\mathrm{O}\left(\mathrm{n}^{2}\right)
\]
- Compare adjacent elements to see if they agree

Worst case complexity
\[
\mathrm{O}(\mathrm{n})
\]

Total:
\[
\mathrm{O}\left(\mathrm{n}^{2}\right)+\mathrm{O}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)
\]

Can it be done in linear time?```

