Section 3.2
 The Growth of Functions

We quantify the concept that g grows at least as fast as f .
What really matters in comparing the complexity of algorithms?

- We only care about the behavior for large problems.
- Even bad algorithms can be used to solve small problems.
- Ignore implementation details such as loop counter incrementation, etc. We can straight-line any loop.

The Big-O Notation

Definition: Let f and g be functions from N to R . Then g asymptotically dominates f , denoted f is $\mathrm{O}(\mathrm{g})$ or ' f is big-O of g,' or 'f is order g,' iff

$$
\exists k \exists C \forall n[n>k \rightarrow|f(n)| \leq C|g(n)|]
$$

Note:

- Choose k
- Choose C; it may depend on your choice of k
- Once you choose k and C , you must prove the truth of the implication (often by induction)

An alternative for those with a calculus background:
Definition: if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$ then f is $\mathrm{o}(\mathrm{g})$ (called little- o of g)

Theorem: If f is $\mathrm{o}(\mathrm{g})$ then f is $\mathrm{O}(\mathrm{g})$.
Proof: by definition of limit as n goes to infinity, $\mathrm{f}(\mathrm{n}) / \mathrm{g}(\mathrm{n})$ gets arbitrarily small.

That is for any $\varepsilon>0$, there must be an integer N such that when $\mathrm{n}>\mathrm{N},|\mathrm{f}(\mathrm{n}) / \mathrm{g}(\mathrm{n})|<\varepsilon$.

Hence, choose $\mathrm{C}=\varepsilon$ and $\mathrm{k}=\mathrm{N}$.
Q. E. D.

It is usually easier to prove f is $\mathrm{o}(\mathrm{g})$

- using the theory of limits
- using L'Hospital's rule
- using the properties of logarithms etc.

Example:

$$
3 \mathrm{n}+5 \text { is } \mathrm{O}\left(\mathrm{n}^{2}\right)
$$

Proof: It's easy to show $\lim _{n \rightarrow \infty} \frac{3 n+5}{n^{2}}=0$ using the theory of limits.

Hence $3 n+5$ is $o\left(n^{2}\right)$ and so it is $O\left(n^{2}\right)$.
Q. E. D.

We will use induction later to prove the result from scratch.

Also note that $\mathrm{O}(\mathrm{g})$ is a set called a
complexity class.

It contains all the functions which g dominates.

$$
f \text { is } O(g) \text { means } f \in O(g) \text {. }
$$

Properties of Big-O

- f is $\mathrm{O}(\mathrm{g})$ iff $\mathrm{O}(\mathrm{f}) \subseteq \mathrm{O}(\mathrm{g})$
- If f is $\mathrm{O}(\mathrm{g})$ and g is $\mathrm{O}(\mathrm{f})$ then $\mathrm{O}(\mathrm{f})=\mathrm{O}(\mathrm{g})$
- The set $\mathrm{O}(\mathrm{g})$ is closed under addition:

If f is $\mathrm{O}(\mathrm{g})$ and h is $\mathrm{O}(\mathrm{g})$ then $\mathrm{f}+\mathrm{h}$ is $\mathrm{O}(\mathrm{g})$

- The set $\mathrm{O}(\mathrm{g})$ is closed under multiplication by a scalar a (real number):

$$
\text { If } \mathrm{f} \text { is } \mathrm{O}(\mathrm{~g}) \text { then of is } \mathrm{O}(\mathrm{~g})
$$

that is,

$$
\mathrm{O}(\mathrm{~g}) \text { is a vector space. }
$$

(The proof is in the book).

Also, as you would expect,

- if f is $O(g)$ and g is $O(h)$, then f is $O(h)$.

In particular

$$
O(f) \subseteq O(g) \subseteq O(h)
$$

Theorem: If f_{1} is $O\left(g_{1}\right)$ and f_{2} is $O\left(g_{2}\right)$ then
i) $f_{1} f_{2}$ is $O\left(g_{1} g_{2}\right)$
ii) $f_{1}+f_{2}$ is $O\left(\max \left\{g_{1}, g_{2}\right\}\right)$

Proof of ii): There is a k_{1} and C_{1} such that

$$
\text { 1. } \mathrm{f}_{1}(\mathrm{n})<\mathrm{C}_{1} \mathrm{~g}_{1}(\mathrm{n})
$$

when $\mathrm{n}>\mathrm{k}_{1}$.
There is a k_{2} and C_{2} such that

$$
\text { 2. } \mathrm{f}_{2}(\mathrm{n})<\mathrm{C}_{2} \mathrm{~g}_{2}(\mathrm{n})
$$

when $\mathrm{n}>\mathrm{k}_{2}$.
We must find a k_{3} and C_{3} such that

$$
\text { 3. } \mathrm{f}_{1}(\mathrm{n}) \mathrm{f}_{2}(\mathrm{n})<\mathrm{C}_{3} \mathrm{~g}_{1}(\mathrm{n}) \mathrm{g}_{2}(\mathrm{n})
$$

when $\mathrm{n}>\mathrm{k}_{3}$.
We use the inequality

$$
\text { if } 0<\mathrm{a}<\mathrm{b} \text { and } 0<\mathrm{c}<\mathrm{d} \text { then } \mathrm{ac}<\mathrm{bd}
$$

to conclude that

$$
\mathrm{f}_{1}(\mathrm{n}) \mathrm{f}_{2}(\mathrm{n})<\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~g}_{1}(\mathrm{n}) \mathrm{g}_{2}(\mathrm{n})
$$

as long as $\mathrm{k}>\max \left\{\mathrm{k}_{1}, \mathrm{k}_{2}\right\}$ so that both inequalities 1 and 2. hold at the same time.

Therefore, choose

$$
\mathrm{C}_{3}=\mathrm{C}_{1} \mathrm{C}_{2}
$$

and

$$
\mathrm{k}_{3}=\max \left\{\mathrm{k}_{1}, \mathrm{k}_{2}\right\} .
$$

Q. E. D.

Important Complexity Classes

$$
\begin{aligned}
& O(1) \subseteq O(\log n) \subseteq O(n) \subseteq O(n \log n) \subseteq O\left(n^{2}\right) \\
& \subseteq O\left(n^{j}\right) \subseteq O\left(c^{n}\right) \subseteq O(n!)
\end{aligned}
$$

where $\mathrm{j}>2$ and $\mathrm{c}>1$.

Example:
Find the complexity class of the function

$$
\left(n n!+3^{n+2}+3 n^{100}\right)\left(n^{n}+n 2^{n}\right)
$$

Solution:

This means to simplify the expression.
Throw out stuff which you know doesn't grow as fast.
We are using the property that if f is $\mathrm{O}(\mathrm{g})$ then $\mathrm{f}+\mathrm{g}$ is $\mathrm{O}(\mathrm{g})$.

- Eliminate the $3 n^{100}$ term since n ! grows much faster.
- Eliminate the $3 \mathrm{n}+2$ term since it also doesn't grow as fast as the n ! term.

Now simplify the second term:
Which grows faster, the n^{n} or the n 2 n ?

- Take the \log (base 2) of both.

Since the log is an increasing function whatever conclusion we draw about the logs will also apply to the original functions (why?).

- Compare $\mathrm{n} \log \mathrm{n}$ or $\log \mathrm{n}+\mathrm{n}$.
- $\mathrm{n} \log \mathrm{n}$ grows faster so we keep the n^{n} term

The complexity class is

$$
\mathrm{O}\left(\mathrm{n} \mathrm{n}!\mathrm{n}^{\mathrm{n}}\right)
$$

If a flop takes a nanosecond, how big can a problem be solved (the value of n) in
a minute?
a day?
a year?
for the complexity class $\mathrm{O}(\mathrm{n} n!\mathrm{n})$.

Note: We often want to compare algorithms in the same complexity class

Example:

Suppose

Algorithm 1 has complexity $\mathrm{n}^{2}-\mathrm{n}+1$
Algorithm 2 has complexity $\mathrm{n}^{2} / 2+3 n+2$
Then both are $\mathrm{O}\left(\mathrm{n}^{2}\right)$ but Algorithm 2 has a smaller leading coefficient and will be faster for large problems.

Hence we write
Algorithm 1 has complexity $n^{2}+O(n)$
Algorithm 2 has complexity $\mathrm{n}^{2} / 2+\mathrm{O}(\mathrm{n})$

