Section 2.2
 Set Operations

Propositional calculus and set theory are both instances of an algebraic system called a

Boolean Algebra.

The operators in set theory are defined in terms of the corresponding operator in propositional calculus

As always there must be a universe U . All sets are assumed to be subsets of U

Definition: Two sets A and B are equal, denoted $A=B$, iff

$$
\forall x[x \in A \leftrightarrow x \in B] .
$$

Note: By a previous logical equivalence we have

$$
\mathrm{A}=\mathrm{B} \text { iff } \forall x[(x \in A \rightarrow x \in B) \wedge(x \in B \rightarrow x \in A)]
$$

or

$$
\mathrm{A}=\mathrm{B} \text { iff } A \subseteq B \text { and } B \subseteq A
$$

Definitions:

- The union of A and B , denoted $\mathrm{A} \cup \mathrm{B}$, is the set

$$
\{x \mid x \in A \vee x \in B\}
$$

-The intersection of A and B, denoted $A \cap B$, is the set

$$
\{x \mid x \in A \wedge x \in B\}
$$

Note: If the intersection is void, A and B are said to be disjoint.

- The complement of A , denoted \bar{A}, is the set

$$
\{\mathrm{x} \mid \neg(\mathrm{x} \in \mathrm{~A})\}
$$

Note: Alternative notation is $A c$, and $\{x \mid x \notin A\}$.

- The difference of A and B , or the complement of B relative to A , denoted $\mathrm{A}-\mathrm{B}$, is the set

$$
A \cap \bar{B}
$$

Note: The (absolute) complement of A is $\mathrm{U}-\mathrm{A}$.

- The symmetric difference of A and B, denoted $A \oplus B$, is the set

$$
(A-B) \cup(B-A)
$$

Examples: $\mathrm{U}=\{0,1,2,3,4,5,6,7,8,9,10\}$
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$. Then

- $A \cup B=\{1,2,3,4,5,6,7,8\}$
- $A \cap B=\{4,5\}$
- $\bar{A}=\{0,6,7,8,9,10\}$
- $\bar{B}=\{0,1,2,3,9,10\}$
- $A-B=\{1,2,3\}$
- $B-A=\{6,7,8\}$
- $A \oplus B=\{1,2,3,6,7,8\}$

Venn Diagrams

A useful geometric visualization tool (for 3 or less sets)

- The Universe U is the rectangular box
- Each set is represented by a circle and its interior
- All possible combinations of the sets must be represented

For 2 sets

For 3 sets

Shade the appropriate region to represent the given set operation.

Set Identities

Set identities correspond to the logical equivalences.

Example:

The complement of the union is the intersection of the complements:

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

Proof: To show:

$$
\forall x[x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B}]
$$

To show two sets are equal we show for all x that x is a member of one set if and only if it is a member of the other.

We now apply an important rule of inference (defined later) called

Universal Instantiation

In a proof we can eliminate the universal quantifier which binds a variable if we do not assume anything about the variable other than it is an arbitrary member of the Universe. We can then treat the resulting predicate as a proposition.

We say

> 'Let x be arbitrary.'

Then we can treat the predicates as propositions:

\[

\]

Hence

$$
x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B}
$$

is a tautology.
Since

- x was arbitrary
- we have used only logically equivalent assertions and definitions we can apply another rule of inference called

Universal Generalization

We can apply a universal quantifier to bind a variable if we have shown the predicate to be true for all values of the variable in the Universe.
and claim the assertion is true for all x, i.e.,

$$
\forall x[x \in \overline{A \cup B} \leftrightarrow x \in \bar{A} \cap \bar{B}]
$$

Q. E. D. (an abbreviation for the Latin phrase "Quod Erat Demonstrandum" - "which was to be demonstrated" used to signal the end of a proof)

Note: As an alternative which might be easier in some cases, use the identity

$$
A=B \Leftrightarrow[A \subseteq B \text { and } B \subseteq A]
$$

Example:
Show $A \cap(B-A)=\varnothing$
The void set is a subset of every set. Hence,

$$
A \cap(B-A) \supseteq \varnothing
$$

Therefore, it suffices to show

$$
A \cap(B-A) \subseteq \varnothing
$$

Or

$$
\forall x[x \in A \cap(B-A) \rightarrow x \in \varnothing]
$$

So as before we say 'let x be arbitrary'.
Show

$$
\mathrm{x} \in \mathrm{~A} \cap(\mathrm{~B}-\mathrm{A}) \rightarrow \mathrm{x} \in \varnothing
$$

is a tautology.
But the consequent is always false.
Therefore, the antecedent better always be false also.
Apply the definitions:

Assertion

\[

\]

Hence, because $P \wedge \neg P$ is always false, the implication is a tautology.

The result follows by Universal Generalization.
Q. E. D.

Union and Intersection of Indexed Collections

Let $A_{1}, A_{2}, \ldots, A_{n}$ be an indexed collection of sets.
Union and intersection are associative (because 'and' and 'or' are) we have:

$$
\begin{gathered}
\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n} \\
\text { and } \\
\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \ldots \cap A_{n}
\end{gathered}
$$

Examples:

Let

$$
\begin{gathered}
A_{i}=[i, \infty), 1 \leq i<\infty \\
\bigcup_{i=1}^{n} A_{i}=[1, \infty) \\
\bigcap_{i=1}^{n} A_{i}=[n, \infty)
\end{gathered}
$$

