Introduction

Applications of discrete mathematics:

- Formal Languages (computer languages)
- Compiler Design
- Data Structures
- Computability
- Automata Theory
- Algorithm Design
- Relational Database Theory
- Complexity Theory (counting)

Example (counting):

The Traveling Salesman Problem

Important in

- circuit design
- many other CS problems

Given:

- n cities $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}$
- distance between city i and $\mathrm{j}, \mathrm{d}_{\mathrm{ij}}$

Find the shortest tour.

$$
\begin{aligned}
& \text { Assume a very fast PC: } \\
& \begin{aligned}
1 \text { flop } & =1 \text { nanosecond } \\
& =10^{-9} \mathrm{sec} . \\
& =1,000,000,000 \mathrm{ops} / \mathrm{sec} \\
& =1 \mathrm{GHz} .
\end{aligned}
\end{aligned}
$$

A tour requires $\mathrm{n}-1$ additions. How many different tours?

Choose the first city n ways, the second city $\mathrm{n}-1$ ways, the third city $\mathrm{n}-2$ ways,
etc.
\# tours $=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots$. (2) (1) $=\mathrm{n}$! (Combinations)
Total number of additions $=(\mathrm{n}-1) \mathrm{n}!($ Rule of Product $)$
If $\mathrm{n}=8, \quad \mathrm{~T}(\mathrm{n})=7 \cdot 8!=282,240$ flops $<1 / 3$ second.
HOWEVER

$$
\text { If } \begin{aligned}
\mathrm{n}=50, \quad \mathrm{~T}(\mathrm{n}) & =49 \cdot 50! \\
& =1.4810^{66}
\end{aligned}
$$

$$
\begin{aligned}
& =1.4910^{57} \text { seconds } \\
& =2.4810^{55} \text { minutes } \\
& =4.1310^{53} \text { hours } \\
& =1.7210^{52} \text { days } \\
& =2.4610^{54} \text { weeks } \\
& =4.7310^{49} \text { years. }
\end{aligned}
$$

...a long time. You'll be an old person before it's finished.

There are some problems for which we do not know if efficient algorithms exist to solve them!

