Introduction

Applications of discrete mathematics:

- Formal Languages (computer languages)
- Compiler Design
- Data Structures
- Computability
- Automata Theory
- Algorithm Design
- Relational Database Theory
- Complexity Theory (counting)

Example (counting):

The Traveling Salesman Problem

Important in

- circuit design
- many other CS problems

Given:

- n cities c_1, c_2, \ldots, c_n
- distance between city i and j, d_{ij}

Find the shortest tour.

Assume a very fast PC:
1 flop = 1 nanosecond
=
$$10^{-9}$$
 sec.
= 1,000,000,000 ops/sec
= 1 GHz.

A tour requires n-1 additions. How many different tours?

Choose the first city n ways, the second city n-1 ways, the third city n-2 ways,

etc.

tours = $n (n-1) (n-2) \dots (2) (1) = n!$ (*Combinations*)

<u>Total number of additions</u> = (n-1) n! (*Rule of Product*)

If n=8, $T(n) = 7 \cdot 8! = 282,240$ flops < 1/3 second.

HOWEVER

If n=50, $T(n) = 49 \cdot 50!$ = 1.48 10⁶⁶ = $1.49 \ 10^{57}$ seconds = $2.48 \ 10^{55}$ minutes = $4.13 \ 10^{53}$ hours = $1.72 \ 10^{52}$ days = $2.46 \ 10^{51}$ weeks = $4.73 \ 10^{49}$ years.

...a long time. You'll be an old person before it's finished.

There are some problems for which we do <u>not</u> know if efficient algorithms exist to solve them!