Category Theory and Functional Programming Universality and Adjoints

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

Adjunctions for Pre-orders

Universal Arrows

Exponentials

Cartesian Closed Categories

References

Adjunctions for Pre-orders

Definition

Let $\left(P, \preceq_{P}\right)$ and (Q, \preceq_{Q}) be two pre-ordered sets and let f and g be two homomorphisms (monotone maps) forth and back.

The maps f and g are adjoint, denoted $f \dashv g$, when for all $x \in P, y \in Q$,

$$
f x \preceq_{Q} y \quad \text { iff } \quad x \preceq_{P} g y .
$$

The map f is the left adjoint and the map g is the right adjoint [Awodey and Bauer 2022].

Universal Arrows

Universal Arrows

Definition
Let $G: \mathcal{D} \rightarrow \mathcal{C}$ be a functor and let C be an object of \mathcal{C}. A universal arrow from C to G is a pair (D, η) where D is an object of \mathcal{D} and η is an arrow

$$
\eta: C \rightarrow G_{0} D
$$

Exponentials

Exponentials

Introduction

We shall introduce abstract characterisations of the following facts of set theory:
(i) The functions of a set X to a set Y, denoted Y^{X}, are also a set.
(ii) A function of two variables $f: X \times Y \rightarrow Z$ can be represented as a function of one variable $\lambda f: X \rightarrow Z^{Y}$.

Exponentials

Set theory

Let Z^{Y} be the set of functions from the set Y to the set Z. For any set X and function $g: X \times Y \rightarrow Z$, the following diagrams commutes:

Exponentials

Set theory (continuation)

$$
\left(g=\operatorname{eval}_{Y, Z} \circ\left(\Lambda g \times \operatorname{id}_{Y}\right)\right)
$$

where

$$
\begin{aligned}
& \operatorname{eval}_{Y, Z}:\left(Z^{Y} \times Y\right) \rightarrow Z:=(f, y) \mapsto f y \\
& \Lambda g: X \rightarrow(Y \rightarrow Z):=x y \mapsto g(x, y)
\end{aligned}
$$

(application),
(currying).

Exponentials

Definition

Let \mathcal{C} be a category with binary products, and let Z and Y be objects of \mathcal{C}. The pair (Z^{Y}, eval), where Z^{Y} is an object of \mathcal{C} and eval is an arrow

$$
\text { eval : }\left(Z^{Y} \times Y\right) \rightarrow Z
$$

is an exponential object iff for any object X and arrow $g: X \times Y \rightarrow Z$, there is a unique arrow $\Lambda g: X \rightarrow Z^{Y}$ such that the following diagram commutes:
(continued on next slide)

Exponentials

Definition (continuation)

$$
\left(g=\operatorname{eval}_{Y, Z} \circ\left(\Lambda g \times \operatorname{id}_{Y}\right)\right)
$$

Cartesian Closed Categories

Cartesian Closed Categories

Definition
A category is a Cartesian closed category iff it has finite products (i.e. a terminal object and binary products) and exponentials.

References

References

Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3-94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).
Awodey, S. and Bauer, A. (2022). Introduction to Categorical Logic. Appendix A. Category Theory. Draft version 2022-01-15. URL: https://awodey.github.io/catlog/ (cit. on p. 4).

