Category Theory and Functional Programming Universality and Adjoints

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

Adjunctions for Pre-orders

Universal Arrows

Exponentials

Cartesian Closed Categories

References

Adjunctions for Pre-orders

Definition

Let (P, \leq_P) and (Q, \leq_Q) be two pre-ordered sets and let f and g be two homomorphisms (monotone maps) forth and back.

The maps f and g are **adjoint**, denoted $f \dashv g$, when for all $x \in P$, $y \in Q$,

$$f x \preceq_Q y$$
 iff $x \preceq_P g y$.

The map f is the **left adjoint** and the map g is the **right adjoint** [Awodey and Bauer 2022].

Universal Arrows

Universal Arrows

Definition

Let $G : \mathcal{D} \to \mathcal{C}$ be a functor and let C be an object of \mathcal{C} . A **universal arrow** from C to G is a pair (D, η) where D is an object of \mathcal{D} and η is an arrow

 $\eta: C \to G_0 D$

Introduction

We shall introduce abstract characterisations of the following facts of set theory:

- (i) The functions of a set X to a set Y, denoted Y^X , are also a set.
- (ii) A function of two variables $f: X \times Y \to Z$ can be represented as a function of one variable $\lambda f: X \to Z^Y$.

Set theory

Let Z^Y be the set of functions from the set Y to the set Z. For any set X and function $g: X \times Y \to Z$, the following diagrams commutes:

(continued on next slide)

Set theory (continuation)

where

$$\begin{aligned} & \operatorname{eval}_{Y,Z} : (Z^Y \times Y) \to Z := (f, y) \mapsto f y & \text{(application)}, \\ & \Lambda g : X \to (Y \to Z) := x \, y \mapsto g(x, y) & \text{(currying)}. \end{aligned}$$

Definition

Let \mathcal{C} be a category with binary products, and let Z and Y be objects of \mathcal{C} . The pair (Z^Y, eval) , where Z^Y is an object of \mathcal{C} and eval is an arrow

 $eval: (Z^Y \times Y) \to Z$

is an **exponential object** iff for any object X and arrow $g: X \times Y \to Z$, there is a unique arrow $\Lambda g: X \to Z^Y$ such that the following diagram commutes:

Definition (continuation)

$$\left(g = \operatorname{eval}_{Y,Z} \circ (\Lambda g \times \operatorname{id}_Y)\right)$$

Cartesian Closed Categories

Cartesian Closed Categories

Definition

A category is a **Cartesian closed category** iff it has finite products (i.e. a terminal object and binary products) and exponentials.

References

References

- Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3–94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).
- Awodey, S. and Bauer, A. (2022). Introduction to Categorical Logic. Appendix A. Category Theory. Draft version 2022-01-15. URL: https://awodey.github.io/catlog/ (cit. on p. 4).