Category Theory and Functional Programming Natural Transformations

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

Introduction
Definition of a Natural Transformation
Examples of Natural Transformations
Natural Isomorphisms
Natural Transformations Between Hom-Functors
Compositions of Natural Transformations
Functor Category
References

Introduction

Introduction

Description

A natural transformation is a structure preserving mapping (i.e. preserves composition of arrows and identity arrows) between 'parallel' functors.

Introduction

Description

A natural transformation is a structure preserving mapping (i.e. preserves composition of arrows and identity arrows) between 'parallel' functors.

"As Eilenberg-Mac Lane first observed, "category" has been defined in order to be able to define "functor" and "functor" has been defined in order to be able to define "natural transformation".' [Mac Lane 1998, p. 48]

Definition of a Natural Transformation

Definition of a Natural Transformation

Definition

Let \mathcal{C} and \mathcal{D} be categories and let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be functors. A natural transformation ${ }^{\dagger}$

$$
\tau: F \Rightarrow G
$$

is a family of arrows in \mathcal{D} indexed by objects A of \mathcal{C},

$$
\left\{\tau_{A}: F_{0} A \rightarrow G_{0} A\right\}_{A \in \operatorname{Obj}(\mathcal{C})}
$$

(components of τ at A)
such that, for all $f: A \rightarrow B$ in \mathcal{C},

$$
\left(G_{1} f\right) \circ \tau_{A}=\tau_{B} \circ\left(F_{1} f\right)
$$

(naturality condition)
(continued on next slide)
${ }^{\dagger}$ The textbook uses the notation $\tau: F \rightarrow G$.

Definition of a Natural Transformation

Definition (continuation)
That is, the following diagram commutes.

$$
\left(\left(G_{1} f\right) \circ \tau_{A}=\tau_{B} \circ\left(F_{1} f\right)\right)
$$

Examples of Natural Transformations

Examples of Natural Transformations

Example

We shall define the natural transformation reverse on the functor List : Set \rightarrow Set.

(continued on next slide)

Examples of Natural Transformations

Example (continuation)

```
reverse : List = List
reverse}\mp@subsup{X}{X}{:}\mp@subsup{\mathrm{ List}}{0}{}X->\mp@subsup{\mathrm{ List}}{0}{}
reverse}\mp@subsup{}{X}{}:[X]->[X
reverse}\mp@subsup{}{X}{}[\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{}]:=[\mp@subsup{x}{n}{},\ldots,\mp@subsup{x}{1}{}
```


Examples of Natural Transformations

Example (continuation)

```
reverse : List }=>\mathrm{ List
reverse}\mp@subsup{X}{X}{:}\mp@subsup{\mathrm{ List}}{0}{}X->\mp@subsup{\mathrm{ List}}{0}{}
reverse}\mp@subsup{}{X}{}:[X]->[X
reverse}\mp@subsup{}{X}{}[\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{}]:=[\mp@subsup{x}{n}{},\ldots,\mp@subsup{x}{1}{}
```


For each $f: X \rightarrow Y$ in Set, the above diagram commutes by naturality.

Examples of Natural Transformations

Example

We shall define the natural transformation unit on the functors Id, List : Set \rightarrow Set.

(continued on next slide)

Examples of Natural Transformations

Example (continuation)

$$
\begin{aligned}
& \text { unit : Id } \Rightarrow \text { List } \\
& \text { unit }_{X}: \operatorname{Id}_{0} X \rightarrow \text { List }_{0} X \\
& \text { unit }_{X}: X \rightarrow[X] \\
& \text { unit }_{X} x:=[x]
\end{aligned}
$$

Examples of Natural Transformations

Example (continuation)

$$
\begin{aligned}
& \text { unit }: \mathrm{Id}^{\mathrm{u}} \Rightarrow \text { List } \\
& \text { unit }_{X}: \mathrm{Id}_{0} X \rightarrow \text { List }_{0} X \\
& \text { unit }_{X}: X \rightarrow[X] \\
& \text { unit }_{X} x:=[x]
\end{aligned}
$$

For each $f: X \rightarrow Y$ in Set, the above diagram commutes by naturality.

Examples of Natural Transformations

Example

We define the natural transformation flatten on the functors List o List, List : Set \rightarrow Set.

(continued on next slide)

Examples of Natural Transformations

Example (continuation)
flatten : List ○ List \Rightarrow List
flatten $_{X}: \operatorname{List}_{0}\left(\operatorname{List}_{0} X\right) \rightarrow$ List $_{0} X$
flatten $_{X}:[[X]] \rightarrow[X]$
flatten $_{X}\left[\left[x_{1}^{1}, \ldots, x_{n_{1}}^{1}\right], \ldots,\left[x_{1}^{k}, \ldots, x_{n_{k}}^{k}\right]\right]:=\left[x_{1}^{1}, \ldots, x_{n_{1}}^{1}, \ldots, x_{1}^{k}, \ldots, x_{n_{k}}^{k}\right]$

Examples of Natural Transformations

Example (continuation)

flatten : List ○ List \Rightarrow List
flatten $_{X}: \operatorname{List}_{0}\left(\operatorname{List}_{0} X\right) \rightarrow$ List $_{0} X$
flatten $_{X}:[[X]] \rightarrow[X]$
flatten $_{X}\left[\left[x_{1}^{1}, \ldots, x_{n_{1}}^{1}\right], \ldots,\left[x_{1}^{k}, \ldots, x_{n_{k}}^{k}\right]\right]:=\left[x_{1}^{1}, \ldots, x_{n_{1}}^{1}, \ldots, x_{1}^{k}, \ldots, x_{n_{k}}^{k}\right]$
For each $f: X \rightarrow Y$ in Set, the following diagram commutes by naturality.

Examples of Natural Transformations

Exercise 1
 Verify naturality of reverse, unit and flatten.

Examples of Natural Transformations

Example

Let Id be the identity functor in Set and let $\times \circ$ (Id, Id) : Set \rightarrow Set the functor sending every set X to $X \times X$ and every function f to $f \times f$. We shall define the natural transformation diagonal Δ.

(continued on next slide)

Examples of Natural Transformations

Example (continuation)

$$
\begin{aligned}
& \Delta: \operatorname{ld} \Rightarrow \times \circ(\mathrm{Id}, \mathrm{Id}) \\
& \Delta_{X}: \operatorname{ld}_{0} X \rightarrow(\times \circ(\mathrm{Id}, \mathrm{Id}))_{0} X \\
& \Delta_{X}: X \rightarrow X \times X \\
& \Delta_{X} x:=(x, x)
\end{aligned}
$$

Examples of Natural Transformations

Example (continuation)

$$
\begin{aligned}
& \Delta: \operatorname{ld} \Rightarrow \times \circ(\mathrm{Id}, \mathrm{Id}) \\
& \Delta_{X}: \operatorname{ld}_{0} X \rightarrow(\times \circ(\mathrm{Id}, \mathrm{Id}))_{0} X \\
& \Delta_{X}: X \rightarrow X \times X \\
& \Delta_{X} x:=(x, x)
\end{aligned}
$$

For each $f: X \rightarrow Y$ in Set, the above diagram commutes by naturality.

Examples of Natural Transformations

Example

Let $\times, \pi_{1}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ be the product and first projection functors, respectively. We shall define the natural transformation first projection π_{1}.

(continued on next slide)

Examples of Natural Transformations

$$
\begin{aligned}
& \text { Example (continuation) } \\
& \begin{aligned}
\pi_{1}: \times \Rightarrow \pi_{1} \\
\pi_{1(A, B)}: \times_{0}(A, B) \rightarrow\left(\pi_{1}\right)_{0}(A, B) \\
\pi_{1(A, B)}: A \times B \rightarrow A
\end{aligned}
\end{aligned}
$$

Examples of Natural Transformations

Example (continuation)

$$
\begin{aligned}
& \pi_{1}: \times \Rightarrow \pi_{1} \\
& \pi_{1(A, B)}: \times_{0}(A, B) \rightarrow\left(\pi_{1}\right)_{0}(A, B) \\
& \pi_{1(A, B)}: A \times B \rightarrow A
\end{aligned}
$$

For each $(f, g):(A, B) \rightarrow\left(A^{\prime}, B^{\prime}\right)$ in $\mathcal{C} \times \mathcal{C}$, the above diagram commutes by naturality.

Examples of Natural Transformations

Example

Let \mathcal{C} be a category with terminal object 1 , let Id be the identity functor in \mathcal{C} and let $K_{1}: \mathcal{C} \rightarrow \mathcal{C}$ be the functor mapping all objects of \mathcal{C} to 1 and all arrows of \mathcal{C} to id_{1}. We shall define the natural transformation κ.

(continued on next slide)

Examples of Natural Transformations

Example (continuation)

$$
\begin{aligned}
\kappa & : \operatorname{ld} \Rightarrow K_{1} \\
\kappa_{A} & : \operatorname{ld}_{0} A \rightarrow\left(K_{1}\right)_{0} A \\
\kappa_{A} & : A \rightarrow 1
\end{aligned}
$$

Examples of Natural Transformations

Example (continuation)

$$
\begin{aligned}
\kappa & : \operatorname{ld} \Rightarrow K_{1} \\
\kappa_{A} & : \operatorname{ld}_{0} A \rightarrow\left(K_{1}\right)_{0} A \\
\kappa_{A} & : A \rightarrow 1
\end{aligned}
$$

For each $f: A \rightarrow B$ in \mathcal{C}, the above diagram commutes by naturality.

Exercises

Exercise 2

Verify naturality of the natural transformation κ.

Natural Isomorphisms

Natural Isomorphisms

Definition
A natural transformation

$$
\begin{aligned}
& \tau: F \Rightarrow G \\
& \tau_{A}: F_{0} A \rightarrow G_{0} A, \quad \text { for all } A \text { in } \mathcal{C}
\end{aligned}
$$

is a natural isomorphism iff each τ_{A} is an isomorphism.

Natural Isomorphisms

Definition
A natural transformation

$$
\begin{aligned}
& \tau: F \Rightarrow G \\
& \tau_{A}: F_{0} A \rightarrow G_{0} A, \quad \text { for all } A \text { in } \mathcal{C}
\end{aligned}
$$

is a natural isomorphism iff each τ_{A} is an isomorphism.

Notation

A natural isomorphism is denoted by $\tau: F \xlongequal{\cong} G$.

Natural Isomorphisms

Example

Let \mathcal{C} be a category with products and let the functors (textbook and [Awodey 2010, § 7.4])

$$
-_{1} \times\left(-{ }_{2} \times--_{3}\right): \mathcal{C}^{3} \rightarrow \mathcal{C} \quad \text { and } \quad\left(-{ }_{1} \times--_{2}\right) \times-{ }_{3}: \mathcal{C}^{3} \rightarrow \mathcal{C}
$$

The natural isomorphism a shows that the product is associative.

$$
\begin{aligned}
a:-{ }_{1} \times\left(--_{2} \times-3\right) & \xlongequal{\cong}\left(--_{1} \times--_{2}\right) \times-_{3} \\
a_{A, B, C} & : A \times(B \times C) \stackrel{\cong}{\Longrightarrow}(A \times B) \times C \\
a_{A, B, C} & :=\left\langle\left\langle\pi_{1}, \pi_{1} \circ \pi_{2}\right\rangle, \pi_{2} \circ \pi_{2}\right\rangle .
\end{aligned}
$$

Natural Isomorphisms

Example

Let \mathcal{C} be a category with binary products. We define the functor $\overline{\times}: \mathcal{C}^{2} \rightarrow \mathcal{C}$ by (textbook and [Awodey 2010, Example 7.8])

$$
\overline{\times}_{0}(A, B):=\times_{0}(B, A)=B \times A, \quad \bar{x}_{1}(f, g):=\times_{1}(g, f)=g \times f .
$$

The natural isomorphism s shows that the product is symmetric.

$$
\begin{array}{rcc}
(A, B) & A \times B \xrightarrow{s_{A, B}} B \times A \\
(f, g) \mid & \\
\left(A^{\prime}, B^{\prime}\right) & f \times g \mid & \\
& A^{\prime} \times B^{\prime} \xrightarrow[s_{A^{\prime}, B^{\prime}}]{ } B^{\prime} \times A^{\prime}
\end{array}
$$

Natural Isomorphisms

Example

Let \mathcal{C} be a category with binary products and terminal object 1 and let the functors

$$
\begin{aligned}
& 1 \times-: \mathcal{C} \rightarrow \mathcal{C} \\
& (1 \times-)_{0} A:=1 \times A \\
& (1 \times-)_{1} f:=\left\langle\operatorname{id}_{1}, f\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& -\times 1: \mathcal{C} \rightarrow \mathcal{C} \\
& (-\times 1)_{0} A:=A \times 1 \\
& (-\times 1)_{1} f:=\left\langle f, \mathrm{id}_{1}\right\rangle .
\end{aligned}
$$

Natural Isomorphisms

Example (continuation)

The natural isomorphisms l and r show that 1 is the unit of the product.

$$
\begin{aligned}
& l: 1 \times-\xlongequal{\cong} \mathrm{Id} \\
& l_{A}: 1 \times A \xrightarrow{\cong} A \\
& l_{A}:=\pi_{2}, \\
& r:-\times 1 \xlongequal{\Longrightarrow} \mathrm{Id} \\
& r_{A}: A \times 1 \xrightarrow{\cong} A \\
& r_{A}:=\pi_{1} .
\end{aligned}
$$

Natural Isomorphisms

Exercise 3

Verify that the families of arrows $s_{A, B}, l_{A}$ and r_{A}, from the previous examples, are natural isomorphisms (textbook, Exercise 53).

Natural Isomorphisms

Exercise 3

Verify that the families of arrows $s_{A, B}, l_{A}$ and r_{A}, from the previous examples, are natural isomorphisms (textbook, Exercise 53).

Remark
Because natural isomorphisms are a self-dual notion, we get also natural isomorphisms s, l and r for a category with binary coproducts and initial object.

Natural Transformations Between Hom-Functors

Natural Transformations Between Hom-Functors

Definition

Let \mathcal{C} be a (locally small) category and let A and B be objects of \mathcal{C}. Recall the hom-functors

$$
\begin{aligned}
& \mathcal{C}(A,-): \mathcal{C} \rightarrow \text { Set } \\
& \mathcal{C}(-, B): \mathcal{C}^{\text {op }} \rightarrow \text { Set }
\end{aligned}
$$

Natural Transformations Between Hom-Functors

Definition (continuation, first notation)
Let $f: A \rightarrow B$ in \mathcal{C}. We define the natural transformation $\mathcal{C}(f,-)$ and we show its naturality condition for $h: C \rightarrow D$ in \mathcal{C}.

$$
\begin{aligned}
& \mathcal{C}(f,-): \mathcal{C}(B,-) \Rightarrow \mathcal{C}(A,-) \\
& \mathcal{C}(f,-)_{C}: \mathcal{C}(B, C) \rightarrow \mathcal{C}(A, C) \\
& \mathcal{C}(f,-)_{C} g: \mathcal{C}(A, C) \\
& \mathcal{C}(f,-)_{C} g:=g \circ f
\end{aligned}
$$

where $\mathcal{C}(f,-)_{C}=\mathcal{C}(-, C)_{0} f$.

Natural Transformations Between Hom-Functors

Definition (continuation, second notation)
Let $f: A \rightarrow B$ in \mathcal{C}. We define the natural transformation $\mathcal{C}(f,-)$ and we show its naturality condition for $h: C \rightarrow D$ in \mathcal{C}.

$$
\begin{aligned}
& \mathcal{C}(f,-): \mathcal{C}(B,-) \Rightarrow \mathcal{C}(A,-) \\
& \mathcal{C}(f,-)_{C}: \mathcal{C}(B, C) \rightarrow \mathcal{C}(A, C) \\
& \mathcal{C}(f,-)_{C} g: \mathcal{C}(A, C) \\
& \mathcal{C}(f,-)_{C} g:=g \circ f
\end{aligned}
$$

Natural Transformations Between Hom-Functors

Exercise 4

Define the natural transformation $\mathcal{C}(-, f): \mathcal{C}(-, A) \Rightarrow \mathcal{C}(-, B)$ and verify its naturality (textbook, Exercise 55).

Yoneda Lemma

Yoneda embedding

Let \mathcal{C} be a locally small category and let A and B be objects of \mathcal{C}. For each natural transformation between hom-functors $\tau: \mathcal{C}(A,-) \rightarrow \mathcal{C}(B,-)$, there is a unique arrow $f: B \rightarrow A$ such that

$$
\tau=\mathcal{C}(f,-)
$$

Yoneda Lemma

Yoneda embedding

Let \mathcal{C} be a locally small category and let A and B be objects of \mathcal{C}. For each natural transformation between hom-functors $\tau: \mathcal{C}(A,-) \rightarrow \mathcal{C}(B,-)$, there is a unique arrow $f: B \rightarrow A$ such that

$$
\tau=\mathcal{C}(f,-)
$$

Remark
The Yoneda lemma is a generalisation of the Yoneda embedding.

Compositions of Natural Transformations

Vertical Composition

Definition

Let \mathcal{C} be a category, let $F, G, H: \mathcal{C} \rightarrow \mathcal{D}$ be functors, and let $\tau: F \Rightarrow G$ and $\mu: G \Rightarrow H$ be natural transformations. The vertical composition of μ and τ is the natural transformation $\mu \circ \tau$ defined by

$$
\begin{aligned}
& \mu \circ \tau: F \Rightarrow H \\
& (\mu \circ \tau)_{A}: F_{0} A \rightarrow H_{0} A:=\mu_{A} \circ \tau_{A}, \quad \text { for all } A \text { in } \mathcal{C} .
\end{aligned}
$$

Vertical Composition

Definition (continuation)

That is, for all $f: A \rightarrow B$ in \mathcal{C} the following diagram commutes.

$$
\left(\begin{array}{rl}
\left(G_{1} f\right) \circ \tau_{A} & =\tau_{B} \circ\left(F_{1} f\right) \\
\left(H_{1} f\right) \circ \mu_{A} & =\mu_{B} \circ\left(G_{1} f\right) \\
\left(H_{1} f\right) \circ(\mu \circ \tau)_{A} & =(\mu \circ \tau)_{B} \circ\left(F_{1} f\right)
\end{array}\right)
$$

Vertical Composition

Exercise 5

Let \mathcal{C} be a category, let $F, G, H: \mathcal{C} \rightarrow \mathcal{D}$ be functors, and let $\tau: F \Rightarrow G$ and $\mu: G \Rightarrow H$ be natural transformations. Show that $\mu \circ \tau: F \Rightarrow H$ is a natural transformation.

Functor Category

Functor Category

Introduction

Since we can define an associative composition of natural transformations and this composition has an identity natural transformation, we can define a category where the objects are functors and the arrows are natural transformations.

Functor Category

Definition
Let \mathcal{C} be a small category and let \mathcal{D} be an arbitrary category. The functor category $\operatorname{Func}(\mathcal{C}, \mathcal{D})$ is defined by
(i) Objects: Functors $F: \mathcal{C} \rightarrow \mathcal{D}$.
(ii) Arrows: Natural transformations $\tau: F \Rightarrow G$.

Functor Category

Definition

Let \mathcal{C} be a small category and let \mathcal{D} be an arbitrary category. The functor category $\operatorname{Func}(\mathcal{C}, \mathcal{D})$ is defined by
(i) Objects: Functors $F: \mathcal{C} \rightarrow \mathcal{D}$.
(ii) Arrows: Natural transformations $\tau: F \Rightarrow G$.
(iii) Composition of arrows: Vertical composition of natural transformations.

Functor Category

Definition

Let \mathcal{C} be a small category and let \mathcal{D} be an arbitrary category. The functor category $\operatorname{Func}(\mathcal{C}, \mathcal{D})$ is defined by
(i) Objects: Functors $F: \mathcal{C} \rightarrow \mathcal{D}$.
(ii) Arrows: Natural transformations $\tau: F \Rightarrow G$.
(iii) Composition of arrows: Vertical composition of natural transformations.
(iv) Identity arrow

$$
\begin{aligned}
\operatorname{id}_{F} & : F \rightarrow F \\
\left(\mathrm{id}_{F}\right)_{A} & : F_{0} A \rightarrow F_{0} A \quad \text { for all } A \text { in } \mathcal{C}, \\
\left(\operatorname{id}_{F}\right)_{A} & :=\operatorname{id}_{\left(F_{0} A\right)} .
\end{aligned}
$$

References

References

Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3-94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).
Awodey, S. [2006] (2010). Category Theory. 2nd ed. Vol. 52. Oxford Logic Guides. Oxford University Press (cit. on pp. 34, 35).
Mac Lane, S. [1971] (1998). Categories for the Working Mathematician. 2nd ed. Springer (cit. on pp. 5, 6).

