Category Theory and Functional Programming Introduction

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

From Set Theory to Category Theory
From Functional Programming to Category Theory
Definition of a Category
Diagrams in Categories
Examples of Categories
Isomorphisms
Opposite Categories and Duality
Subcategories
References

From Set Theory to Category Theory

'Algebra' of Functions

Definition
Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. The composite of g after \boldsymbol{f} is the function defined by

$$
g \circ f: X \rightarrow Z:=x \mapsto g(f x) .
$$

'Algebra' of Functions

Definition
Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. The composite of g after \boldsymbol{f} is the function defined by

$$
g \circ f: X \rightarrow Z:=x \mapsto g(f x) .
$$

Diagram.

'Algebra' of Functions

Remark
The textbook writes ' $g \circ f(x)$ ' instead of ' $(g \circ f) x^{\prime}$.

'Algebra' of Functions

Theorem
Let $f: X \rightarrow Y, g: Y \rightarrow Z$ and $h: Z \rightarrow W$ be three functions. Then

$$
h \circ(g \circ f)=(h \circ g) \circ f .
$$

That is, the composition of functions is associative.

'Algebra' of Functions

Theorem (continuation)
Diagrams.
(i)

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

(continued on next slide)

'Algebra' of Functions

Theorem (continuation)
Diagrams.
(ii) In [Mac Lane 1998, p. 8].

(continued on next slide)

'Algebra' of Functions

Theorem (continuation)
Diagrams.
(iii) In [Awodey 2010, p. 3].

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

'Algebra' of Functions

Definition
Let X be a set. The identity function on \boldsymbol{X} is defined by

$$
\operatorname{id}_{X}: X \rightarrow X:=x \mapsto x .
$$

'Algebra' of Functions

Theorem
Let $f: X \rightarrow Y$ be a function. Then

$$
f \circ \operatorname{id}_{X}=f=\operatorname{id}_{Y} \circ f
$$

That is, the identity functions are the unit for composition.

'Algebra' of Functions

Theorem (continuation)
Diagrams.
(i)

(continued on next slide)

'Algebra' of Functions

Theorem (continuation)
Diagrams.
(ii) \ln [Awodey 2010, p. 4].

$$
f \circ \operatorname{id}_{X}=f=\operatorname{id}_{Y} \circ f
$$

From Elements to Functions

Elements as functions
Let $\mathbb{1}:=\{*\}$ be an one-element set and let X be a set. For each $x \in X$ we define the function

$$
\bar{x}: \mathbb{1} \rightarrow X:=* \mapsto x .
$$

From Elements to Functions

Elements as functions
Let $\mathbb{1}:=\{*\}$ be an one-element set and let X be a set. For each $x \in X$ we define the function

$$
\bar{x}: \mathbb{1} \rightarrow X:=* \mapsto x
$$

Theorem
Let X be a set. The set X and the set of functions $\{\bar{x}: \mathbb{1} \rightarrow X \mid x \in X\}$ are isomorphic.

From Set Theory to Category Theory

Definition

Let $f: X \rightarrow Y$ be a function. The function f is

injective	iff
surjective	iff

monic	iff
epic	iff

for all $x, x^{\prime} \in X, f x=f x^{\prime}$ implies $x=x^{\prime}$ for all $y \in Y$, there exists $x \in X$ such that $f x=y$
for all $g, h: Z \rightarrow X, f \circ g=f \circ h$ implies $g=h$
for all $i, j: Y \rightarrow Z, i \circ f=j \circ f$ implies $i=j$

From Set Theory to Category Theory

Definition

Let $f: X \rightarrow Y$ be a function. The function f is

injective	iff	for all $x, x^{\prime} \in X, f x=f x^{\prime}$ implies $x=x^{\prime}$
surjective	iff	for all $y \in Y$, there exists $x \in X$ such that $f x=y$
monic	iff	for all $g, h: Z \rightarrow X, f \circ g=f \circ h$ implies $g=h$
epic	iff	for all $i, j: Y \rightarrow Z, i \circ f=j \circ f$ implies $i=j$

Remark
Nouns: Injection, surjection, monomorphism and epimorphism.

From Set Theory to Category Theory

Theorem (Proposition 1)
Let $f: X \rightarrow Y$. Then,
(i) the function f is injective iff f is monic,
(ii) the function f is surjective iff f is epic.

From Set Theory to Category Theory

Theorem (Proposition 1)
Let $f: X \rightarrow Y$. Then,
(i) the function f is injective iff f is monic,
(ii) the function f is surjective iff f is epic.

Exercise 1

Let $f: X \rightarrow Y$ be a function. Show that f is injective iff it is monic (Proposition 1.i).
Exercise 2
Let $f: X \rightarrow Y$ be a function. Show that f is surjective iff it is epic (Exercise 2).

From Functional Programming to Category Theory

From Functional Programming to Category Theory

Types, composition, identities, applicative and functional laws Whiteboard.

Applicative laws

$$
\begin{aligned}
\operatorname{id} x & =x, \\
(g \circ f) x & =g(f x), \\
\mathrm{fst}(x, y) & =x \\
\langle f, g\rangle x & =(f x, g x) .
\end{aligned}
$$

Definition of a Category

Definition of a Category

Definition

A category \mathcal{C} consists of:
(i) A collection $\operatorname{Obj}(\mathcal{C})$ of objects.

Notation. Objects are denoted by A, B, C, \ldots
(ii) A collection $\operatorname{Ar}(\mathcal{C})$ of arrows or morphisms.

Notation. Arrows are denoted by f, g, h, \ldots
(continued on next slide)

Definition of a Category

Definition (continuation)
(iii) Two mappings

$$
\begin{aligned}
\text { dom }: \operatorname{Ar}(\mathcal{C}) & \rightarrow \operatorname{Obj}(\mathcal{C}) \\
\operatorname{cod}: \operatorname{Ar}(\mathcal{C}) & \rightarrow \operatorname{Obj}(\mathcal{C})
\end{aligned}
$$

(source),
(target).

Definition of a Category

Definition (continuation)
(iii) Two mappings

$$
\begin{aligned}
\operatorname{dom}: \operatorname{Ar}(\mathcal{C}) & \rightarrow \operatorname{Obj}(\mathcal{C}) \\
\operatorname{cod}: \operatorname{Ar}(\mathcal{C}) & \rightarrow \operatorname{Obj}(\mathcal{C})
\end{aligned}
$$

These mappings assign to each arrow f its domain $\operatorname{dom} f$ and its codomain $\operatorname{cod} f$.

Definition of a Category

Definition (continuation)
(iii) Two mappings

$$
\begin{aligned}
\text { dom }: \operatorname{Ar}(\mathcal{C}) & \rightarrow \operatorname{Obj}(\mathcal{C}) \\
\operatorname{cod}: \operatorname{Ar}(\mathcal{C}) & \rightarrow \operatorname{Obj}(\mathcal{C})
\end{aligned}
$$

These mappings assign to each arrow f its domain $\operatorname{dom} f$ and its codomain $\operatorname{cod} f$.
Notation. An arrow f with $\operatorname{dom} f=A$ and $\operatorname{cod} f=B$ is written $A \xrightarrow{f} B$ or $f: A \rightarrow B$.

Definition of a Category

Definition (continuation)
Notation. The collection $\mathcal{C}(A, B)$ is the collection of arrows from object A to object B, that is,

$$
\mathcal{C}(A, B):=\{f \in \operatorname{Ar}(\mathcal{C}) \mid A \xrightarrow{f} B\} .
$$

Definition of a Category

Definition (continuation)
Notation. The collection $\mathcal{C}(A, B)$ is the collection of arrows from object A to object B, that is,

$$
\mathcal{C}(A, B):=\{f \in \operatorname{Ar}(\mathcal{C}) \mid A \xrightarrow{f} B\} .
$$

Notation. The collection $\mathcal{C}(A, B)$ also will be denoted by $\operatorname{Mor}_{\mathcal{C}}(A, B)$.

Definition of a Category

Definition (continuation)
Notation. The collection $\mathcal{C}(A, B)$ is the collection of arrows from object A to object B, that is,

$$
\mathcal{C}(A, B):=\{f \in \operatorname{Ar}(\mathcal{C}) \mid A \xrightarrow{f} B\} .
$$

Notation. The collection $\mathcal{C}(A, B)$ also will be denoted by $\operatorname{Mor}_{\mathcal{C}}(A, B)$.
Notation. If the collection $\mathcal{C}(A, B)$ is a set it is called a hom-set and it is denoted $\operatorname{hom}_{\mathcal{C}}(A, B)$.

Definition of a Category

Definition (continuation)
Notation. The collection $\mathcal{C}(A, B)$ is the collection of arrows from object A to object B, that is,

$$
\mathcal{C}(A, B):=\{f \in \operatorname{Ar}(\mathcal{C}) \mid A \xrightarrow{f} B\} .
$$

Notation. The collection $\mathcal{C}(A, B)$ also will be denoted by $\operatorname{Mor}_{\mathcal{C}}(A, B)$.
Notation. If the collection $\mathcal{C}(A, B)$ is a set it is called a hom-set and it is denoted $\operatorname{hom}_{\mathcal{C}}(A, B)$.
Convention. All the collections $\mathcal{C}(A, B)$ are hom-sets in the textbook.

Definition of a Category

Definition (continuation)
(iv) For all objects A, B, C, a composition map

$$
\mathcal{C}_{A, B, C}: \mathcal{C}(A, B) \times \mathcal{C}(B, C) \rightarrow \mathcal{C}(A, C)
$$

Notation. The map $\mathcal{C}_{A, B, C}(f, g)$ is written $g \circ f$.

Definition of a Category

Definition (continuation)
(iv) For all objects A, B, C, a composition map

$$
\mathcal{C}_{A, B, C}: \mathcal{C}(A, B) \times \mathcal{C}(B, C) \rightarrow \mathcal{C}(A, C)
$$

Notation. The map $\mathcal{C}_{A, B, C}(f, g)$ is written $g \circ f$.
(v) For all object A, an identity arrow

$$
A \xrightarrow{\mathrm{id}_{A}} A
$$

Definition of a Category

Definition (continuation)
The above items must satisfy the following axioms, where arrow equality is a logical primitive.

Definition of a Category

Definition (continuation)
The above items must satisfy the following axioms, where arrow equality is a logical primitive.
(i) Associativity law

For all arrows $A \xrightarrow{f} B, B \xrightarrow{g} C, C \xrightarrow{h} D$,

$$
h \circ(g \circ f)=(h \circ g) \circ f .
$$

Definition of a Category

Definition (continuation)
The above items must satisfy the following axioms, where arrow equality is a logical primitive.
(i) Associativity law

For all arrows $A \xrightarrow{f} B, B \xrightarrow{g} C, C \xrightarrow{h} D$,

$$
h \circ(g \circ f)=(h \circ g) \circ f .
$$

(ii) Unit laws

For all arrow $A \xrightarrow{f} B$,

$$
f \circ \operatorname{id}_{A}=f=\operatorname{id}_{B} \circ f .
$$

Definition of a Category

Remark

Some authors ${ }^{\dagger}$ state the unit laws in the following equivalent way:
For all arrows $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$,

$$
\begin{aligned}
\operatorname{id}_{B} \circ f & =f, \\
g \circ \operatorname{id}_{B} & =g .
\end{aligned}
$$

Definition of a Category

Remark

Note that the axioms in the definition of category are generalised monoid axioms.

Diagrams in Categories

Diagrams in Categories

Commutativity of diagrams
A diagram commutes when every possible path from one object to other object is the same.

Diagrams in Categories

Basic cases

(i) Commutativity of a triangle

$$
(h=g \circ f)
$$

Diagrams in Categories

Basic cases

(v) Commutativity of a square

$$
(g \circ f=k \circ h)
$$

Diagrams in Categories

Example

Let $A \xrightarrow{f} B, B \xrightarrow{g} C$ and $C \xrightarrow{h} D$. The associativity of the composition is equivalent to say that the following diagram commutes.

$$
(h \circ(g \circ f)=(h \circ g) \circ f)
$$

Diagrams in Categories

Example

Let $A \xrightarrow{f} B$. The unit of the identity arrow is equivalent to say that the following diagram commutes.

$$
\left(f \circ \operatorname{id}_{A}=f=\operatorname{id}_{B} \circ f\right)
$$

Examples of Categories

Examples of Categories

Example

The category Set of sets and functions.

Examples of Categories

Example

Mathematical structures and structure preserving functions.

- Pos (partially ordered sets and monotone functions)
- Mon (monoids and monoid homomorphisms)
- Grp (groups and group homomorphisms)
- Top (topological spaces and continuous functions)

Examples of Categories

Example

Mathematical structures and structure preserving functions.

- Pos (partially ordered sets and monotone functions)
- Mon (monoids and monoid homomorphisms)
- Grp (groups and group homomorphisms)
- Top (topological spaces and continuous functions)

Exercise 3

Show that Pos, Mon, Grp and Top are categories (Exercise 6).

Examples of Categories

Remark

The arrows of a category do no have to be functions as shows the following example.

Examples of Categories

Example

The category Rel.

- The objects are sets.
- The arrows $X \xrightarrow{R} Y$ are the relations $R \subseteq X \times Y$.
- The arrow composition is the relation composition. Given $X \xrightarrow{R} Y$ and $Y \xrightarrow{S} Z$ then

$$
S \circ R:=\{(x, z) \in X \times Z \mid \text { there exists } y \in Y \text { such as }(x, y) \in R \text { and }(y, z) \in S\} .
$$

- The identity arrow on X is the equality relation on X, that is

$$
\operatorname{id}_{X}:=\{(x, x) \in X \times X \mid x \in X\}
$$

Examples of Categories

Remark

The objects of a category do no have to be sets as show the following examples.

Examples of Categories

Example

The categories 1, 2, 3 and 4. The diagrams do not show the identity arrows.
*

1

2

3

4

Examples of Categories

Example

The categories 1, 2, 3 and 4. The diagrams do not show the identity arrows.

Examples of Categories

Example

The empty category. It has no objects nor arrows.

Examples of Categories

Example

Any monoid is a one-object category.

- Arrows: Elements of the monoid
- Composition: Monoid binary operation
- Identity arrow: Monoid unit

Examples of Categories

Example

One-object category from monoid $(\mathbb{N},+, 0)$.

$$
\left(\begin{array}{c}
0+n=n \\
1+1=2 \\
1+2=3 \\
\vdots
\end{array}\right)
$$

Examples of Categories

Example

Any pre-ordered set (P, \preceq) is a category.

- Objects: Elements of P
- Arrows: There is an arrow $A \rightarrow B$ iff $A \preceq B$
- Composition: Binary relation \preceq
- Identity arrow: The arrow $A \rightarrow A$ because $A \preceq A$

Examples of Categories

Example

Any pre-ordered set (P, \preceq) is a category.

- Objects: Elements of P
- Arrows: There is an arrow $A \rightarrow B$ iff $A \preceq B$
- Composition: Binary relation \preceq
- Identity arrow: The arrow $A \rightarrow A$ because $A \preceq A$

Remark

Note that the above category has at most one arrow between any two objects.

Examples of Categories

Example

Any category with at most one arrow between any two objects is a pre-order.

- Elements of the pre-order: Objects of the category
- Binary relation: $A \preceq B$ iff there is an arrow $A \rightarrow B$

The relation \preceq is transitive because the composition of functions and it is reflexive because the identity arrows.

Examples of Categories

Example

A category for a simple functional programming language given by (adapted from [Pierce 1991]):

- Types: Nat, Bool, Unit, \rightarrow.
- Built-in functions:

$$
\begin{gathered}
\text { isZero }: \text { Nat } \rightarrow \text { Bool } \\
\text { not }: \text { Bool } \rightarrow \text { Bool } \\
\text { succ }: \text { Nat } \rightarrow \text { Nat }
\end{gathered}
$$

```
(test for zero)
(negation)
(successor)
```

- Constants
zero: Nat; true,false: Bool; unit: Unit.
(continued on next slide)

Examples of Categories

Example (continuation)

The category is given by:

- Objects: Types
- Arrows:
- Built-in functions
- The constants are arrows from Unit to the type of the constant
- Add arrows required by arrow composition
- Identity arrows: Identity functions in each type
- Equating arrows that represent the same functions (according to the semantics of the language)
(continued on next slide)

Examples of Categories

Example (continuation)

Examples of Categories

Exercise 4

Show an example of a category from logic. See, e.g. [Awodey 2010, § 1.14. Example 10].

Examples of Categories

Example

Hask is the idealised category for the Haskell programming language.

- Objects: Haskell's (unlifted) types
- Arrows: Haskell's functions
- Composition:

$$
\begin{aligned}
& (.)::(b->c)->(a->b)->a->c \\
& g . f=\backslash x \rightarrow g(f \text { x) }
\end{aligned}
$$

- Identity arrow:

```
id :: a -> a
id x = x
```


Examples of Categories

Exercise 5

Given some implementation of categories in Haskell, show two examples of categories in that implementation.

Isomorphisms

Monomorphisms

Definition

Let \mathcal{C} be a category and let $A \xrightarrow{f} B$ be an arrow in \mathcal{C}. The arrow f is monic (or a monomorphism) iff

$$
\text { for all } C \xrightarrow{g, h} A, f \circ g=f \circ h \text { implies } g=h,
$$

that is,

$$
C \underset{h}{\underline{g}} A \xrightarrow{f} B \quad \text { implies } \quad g=h,
$$

where the above diagram commutes.

Epimorphisms

Definition

Let \mathcal{C} be a category and let $A \xrightarrow{f} B$ be an arrow in \mathcal{C}. The arrow f is epic (or a epimorphism) iff

$$
\text { for all } B \xrightarrow{i, j} C, i \circ f=j \circ f \text { implies } i=j,
$$

that is,

$$
A \xrightarrow{f} B \underset{j}{\stackrel{i}{\longrightarrow}} C \quad \text { implies } \quad i=j,
$$

where the above diagram commutes.

Isomorphisms

Definition
Let \mathcal{C} be a category. An arrow $A \xrightarrow{i} B$ in \mathcal{C} is an isomorphism (or iso) iff there exists an arrow $B \xrightarrow{j} A$ in \mathcal{C} such that

$$
j \circ i=\operatorname{id}_{A} \quad \text { and } \quad i \circ j=\operatorname{id}_{B} .
$$

Isomorphisms

Definition

Let \mathcal{C} be a category. An arrow $A \xrightarrow{i} B$ in \mathcal{C} is an isomorphism (or iso) iff there exists an arrow $B \xrightarrow{j} A$ in \mathcal{C} such that

$$
j \circ i=\operatorname{id}_{A} \quad \text { and } \quad i \circ j=\operatorname{id}_{B} .
$$

The arrow j is the inverse of i and it is denoted by i^{-1}.

Isomorphisms

Definition (continuation)
That is, an arrow $A \xrightarrow{i} B$ is an isomorphism iff there exists an arrow $B \xrightarrow{i^{-1}} A$ such that the following diagram commutes

$$
\binom{i^{-1} \circ i=\operatorname{id}_{A}}{i \circ i^{-1}=\operatorname{id}_{B}}
$$

Isomorphisms

Notation

An isomorphism $i: A \rightarrow B$ is denoted by $i: A \xrightarrow{\cong} B$.

Isomorphisms

Notation

An isomorphism $i: A \rightarrow B$ is denoted by $i: A \xrightarrow{\cong} B$.
Definition
Two objects A and B are isomorphic, written $A \cong B$, iff there exists $i: A \xrightarrow{\cong} B$.

Isomorphisms

Theorem

If an arrow has inverse it is unique.
Exercise 6
Proof the previous theorem (Exercise 10).

Isomorphisms

Exercise 7
Show that \cong is an equivalence relation on the objects of a category (Exercise 11).

Isomorphisms

Example

Isomorphisms in Set and Rel correspond to one-one correspondences (bijections).

Isomorphisms

Example

Isomorphisms in Grp correspond to group isomorphisms, in Pos to order isomorphisms and in Top to homeomorphisms.

Isomorphisms

Example

Recall that any monoid is a one-object category. Any group is a one-object category in which every arrow is an isomorphism.

Isomorphisms

Example

Recall that any monoid is a one-object category. Any group is a one-object category in which every arrow is an isomorphism.

Exercise 8
Verify the previous example.

Isomorphisms

Example

One-object category from monoid $(\mathbb{Z},+, 0)$.

Groupoids

Definition
A groupoid is a category in which every arrow is an isomorphism.

Groupoids

Example
A group is one-object grupoid.

Groupoids

Definition

A setoid (X, \sim) is a set X equipped with an equivalence relation \sim.

Groupoids

Definition

A setoid (X, \sim) is a set X equipped with an equivalence relation \sim.

Example

Given a setoid (X, \sim) we can define an associated grupoid.

- Objects: Elements of X
- Arrows: There is an arrow $x \rightarrow y$ iff $x \sim y$.
- Composition: From transitivity of \sim.
- Identity arrow: From reflexivity of \sim.

Monics, Epics and Isos

Theorem (Awodey [2010, Proposition 2.9])
If an arrow is iso then it is monic and epic.

Monics, Epics and Isos

Theorem (Awodey [2010, Proposition 2.9])
If an arrow is iso then it is monic and epic.
Exercise 9
Proof the previous theorem.

Monics, Epics and Isos

Example (Exercise 1.1.6.e)

In the category Mon of monoids and monoid homomorphisms, consider the inclusion map

$$
i:(\mathbb{N},+, 0) \rightarrow(\mathbb{Z},+, 0)
$$

of natural numbers into the integers. Show that this arrow is both monic and epic. Is it an iso?

Monics, Epics and Isos

Example (Exercise 1.1.6.e)
In the category Mon of monoids and monoid homomorphisms, consider the inclusion map

$$
i:(\mathbb{N},+, 0) \rightarrow(\mathbb{Z},+, 0)
$$

of natural numbers into the integers. Show that this arrow is both monic and epic. Is it an iso?
Solution
Whiteboard.

Monics, Epics and Isos

Example (Exercise 1.1.6.e)

In the category Mon of monoids and monoid homomorphisms, consider the inclusion map

$$
i:(\mathbb{N},+, 0) \rightarrow(\mathbb{Z},+, 0)
$$

of natural numbers into the integers. Show that this arrow is both monic and epic. Is it an iso?

Solution

Whiteboard.
Remark
As showed the previous exercises if an arrow is monic and epic does not imply that it is an iso.

Skeletal Categories

Definition (Awodey [2010])
A category is skeletal iff isomorphic objects are always equals.

Opposite Categories and Duality

Opposite Categories and Duality

Introduction
We get a category from other category by turning around the arrows and then we get a duality principle between both categories.

Opposite Categories

Definition

Let \mathcal{C} be a category. The opposite (or dual) category $\mathcal{C}^{\text {op }}$ of \mathcal{C} is defined by

$$
\begin{aligned}
\operatorname{Obj}\left(\mathcal{C}^{\mathrm{op}}\right) & :=\operatorname{Obj}(\mathcal{C}), \\
\mathcal{C}^{\mathrm{op}}\left(A^{*}, B^{*}\right) & :=\mathcal{C}(B, A), \\
\operatorname{id}_{A^{*}} & :=\left(\operatorname{id}_{A}\right)^{*}, \\
g^{*} \circ f^{*} & :=(f \circ g)^{*},
\end{aligned}
$$

where we use * for distinguishing objects and arrows of the opposite category following [Awodey 2010].

Opposite Categories

Example

The left diagram in a category \mathcal{C} corresponds to the right diagram in the category $\mathcal{C}^{\mathrm{op}}$.

The Duality Principle

Definition

Let S be a sentence. The dual statement $S^{\circ \mathrm{p}}$ of S is the sentence obtained by reversing all the arrows of S.

Description
Let \mathcal{C} be a category and S be a sentence. The duality principle states that S holds in \mathcal{C} iff $\quad S^{\text {op }}$ holds in $\mathcal{C}^{\mathrm{op}}$.

The Duality Principle

Example

Monic and epic are dual notions. That is, an arrow f is monic in \mathcal{C} iff f^{*} is epic in $\mathcal{C}^{\text {op }}$.

Subcategories

Subcategories

Definition

A subcategory \mathcal{D} of a category \mathcal{C} is a collection of some of the objects and arrows of \mathcal{C}

$$
\begin{aligned}
\operatorname{Obj}(\mathcal{D}) & \subseteq \operatorname{Obj}(\mathcal{C}) \\
\operatorname{Ar}(\mathcal{D}) & \subseteq \operatorname{Ar}(\mathcal{C})
\end{aligned}
$$

which is closed under dom, cod, id, and \circ, that is,

$$
\begin{array}{rll}
f \in \operatorname{Ar}(\mathcal{D}) & \text { implies } & \operatorname{dom} f, \operatorname{cod} f \in \operatorname{Obj}(\mathcal{D}), \\
f \in \mathcal{D}(A, B), g \in \mathcal{D}(B, C) & \text { implies } & g \circ f \in \mathcal{D}(A, C), \\
A \in \operatorname{Obj}(\mathcal{D}) & \text { implies } & \operatorname{id}_{A} \in \mathcal{D}(A, A)
\end{array}
$$

Subcategories

Definition (continuation)
Additionally, the category \mathcal{D} is

- a full subcategory of \mathcal{C} iff

$$
\mathcal{D}(A, B)=\mathcal{C}(A, B), \quad \text { for all } A, B \in \operatorname{Obj}(\mathcal{D})
$$

- a lluf subcategory of \mathcal{C} iff

$$
\operatorname{Obj}(\mathcal{D})=\operatorname{Obj}(\mathcal{C})
$$

Subcategories

Example

Grp is a full subcategory of Mon.

Subcategories

Example

Grp is a full subcategory of Mon.
Example
Set is a lluf subcategory of Rel.

References

References

Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3-94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).
Asperti, A. and Longo, G. (1980). Categories, Types, and Structures. MIT Press (cit. on p. 38).
Awodey, S. [2006] (2010). Category Theory. 2nd ed. Vol. 52. Oxford Logic Guides. Oxford University Press (cit. on pp. 11, 15, 64, 86, 87, 91, 94).
Goldblatt, R. [1979] (2006). Topoi. The Categorical Analysis of Logic. Revised edition. Dover Publications (cit. on p. 38).
Mac Lane, S. [1971] (1998). Categories for the Working Mathematician. 2nd ed. Springer (cit. on pp. 10, 38).
Pierce, B. C. (1991). Basic Category Theory for Computer Scientists. Foundations of Computing Series. MIT Press (cit. on p. 61).
Zeng, W. J. (n.d.). A Subtle Introduction to Category Theory. (Cit. on pp. 53, 54).

