Category Theory and Functional Programming Introduction

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

From Set Theory to Category Theory

From Functional Programming to Category Theory

Definition of a Category

Diagrams in Categories

Examples of Categories

Isomorphisms

Opposite Categories and Duality

Subcategories

References

From Set Theory to Category Theory

Definition

Let $f: X \to Y$ and $g: Y \to Z$ be two functions. The **composite of** g after f is the function defined by

$$g \circ f : X \to Z := x \mapsto g(f x).$$

Definition

Let $f: X \to Y$ and $g: Y \to Z$ be two functions. The **composite of** g after f is the function defined by

$$g \circ f : X \to Z := x \mapsto g(f x).$$

Diagram.

Remark

The textbook writes ' $g \circ f(x)$ ' instead of ' $(g \circ f) x$ '.

Theorem

Let $f:X \to Y$, $g:Y \to Z$ and $h:Z \to W$ be three functions. Then

 $h \circ (g \circ f) = (h \circ g) \circ f.$

That is, the composition of functions is associative.

(continued on next slide)

Theorem (continuation) Diagrams.

(i)

 $(h \circ g) \circ f$ $h \circ (g \circ f)$ W $\rightarrow W$ $g \circ f$ $h \circ g$ hh \downarrow Y $\rightarrow Z$ Zgg $h \circ (q \circ f) = (h \circ q) \circ f$

(continued on next slide)

Theorem (continuation)

Diagrams.

(ii) In [Mac Lane 1998, p. 8].

(continued on next slide)

10/104

From Set Theory to Category Theory

Theorem (continuation)

Diagrams.

(iii) In [Awodey 2010, p. 3].

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Definition

Let X be a set. The identity function on \boldsymbol{X} is defined by

 $\operatorname{id}_X: X \to X := x \mapsto x.$

Theorem Let $f: X \to Y$ be a function. Then

 $f \circ \operatorname{id}_X = f = \operatorname{id}_Y \circ f.$

That is, the identity functions are the unit for composition.

(continued on next slide)

Theorem (continuation)

Diagrams.

(i)

(continued on next slide)

From Set Theory to Category Theory

Theorem (continuation)

Diagrams.

(ii) In [Awodey 2010, p. 4].

$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f$$

From Elements to Functions

Elements as functions

Let $\mathbb{1} := \{*\}$ be an one-element set and let X be a set. For each $x \in X$ we define the function

 $\overline{x}:\mathbb{1}\to X:=\ast\mapsto x.$

From Elements to Functions

Elements as functions

Let $1 := \{*\}$ be an one-element set and let X be a set. For each $x \in X$ we define the function

$$\overline{x}:\mathbb{1}\to X:=\ast\mapsto x.$$

Theorem

Let X be a set. The set X and the set of functions $\{ \overline{x} : \mathbb{1} \to X \mid x \in X \}$ are isomorphic.

Definition

Let $f:X\to Y$ be a function. The function f is

injective	iff	for all $x,x'\in X$, $fx=fx'$ implies $x=x'$
surjective	iff	for all $y \in Y$, there exists $x \in X$ such that $f x = y$
monic	iff	for all $g,h:Z ightarrow X$, $f\circ g=f\circ h$ implies $g=h$
epic	iff	for all $i,j:Y ightarrow Z$, $i\circ f=j\circ f$ implies $i=j$

Definition

Let $f:X\to Y$ be a function. The function f is

injective	iff	for all $x,x'\in X$, $fx=fx'$ implies $x=x'$
surjective	iff	for all $y \in Y$, there exists $x \in X$ such that $f x = y$
monic	iff	for all $g,h:Z ightarrow X$, $f\circ g=f\circ h$ implies $g=h$
epic	iff	for all $i, j: Y \to Z$, $i \circ f = j \circ f$ implies $i = j$

Remark

Nouns: Injection, surjection, monomorphism and epimorphism.

From Set Theory to Category Theory

Theorem (Proposition 1)

Let $f: X \to Y$. Then,

(i) the function f is injective iff f is monic,

(ii) the function f is surjective iff f is epic.

Theorem (Proposition 1)

Let $f: X \to Y$. Then,

(i) the function f is injective iff f is monic,

(ii) the function f is surjective iff f is epic.

Exercise 1

Let $f: X \to Y$ be a function. Show that f is injective iff it is monic (Proposition 1.i).

Exercise 2

Let $f: X \to Y$ be a function. Show that f is surjective iff it is epic (Exercise 2).

From Functional Programming to Category Theory

From Functional Programming to Category Theory

Types, composition, identities, applicative and functional laws Whiteboard.

Applicative laws

$$id x = x,$$

$$(g \circ f) x = g (f x),$$

$$fst (x, y) = x,$$

$$\langle f, g \rangle x = (f x, g x)$$

Definition

A category ${\mathcal C}$ consists of:

(i) A collection $Obj(\mathcal{C})$ of **objects**.

Notation. Objects are denoted by A, B, C, \ldots

(ii) A collection $\operatorname{Ar}(\mathcal{C})$ of **arrows** or **morphisms**. *Notation*. Arrows are denoted by f, g, h, \ldots

(continued on next slide)

Definition (continuation)

(iii) Two mappings

$$\begin{array}{ll} \operatorname{dom}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Obj}(\mathcal{C}) & (\operatorname{source}),\\ \operatorname{cod}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Obj}(\mathcal{C}) & (\operatorname{target}). \end{array}$$

Definition (continuation)

(iii) Two mappings

$$\begin{array}{ll} \operatorname{dom}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Obj}(\mathcal{C}) & (\operatorname{source}),\\ \operatorname{cod}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Obj}(\mathcal{C}) & (\operatorname{target}). \end{array}$$

These mappings assign to each arrow f its **domain** dom f and its **codomain** cod f.

Definition (continuation)

(iii) Two mappings

$$\begin{array}{ll} \operatorname{dom}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Obj}(\mathcal{C}) & (\operatorname{source}),\\ \operatorname{cod}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Obj}(\mathcal{C}) & (\operatorname{target}). \end{array}$$

These mappings assign to each arrow f its **domain** dom f and its **codomain** cod f. Notation. An arrow f with dom f = A and cod f = B is written $A \xrightarrow{f} B$ or $f : A \to B$.

(continued on next slide)

Definition (continuation)

Notation. The collection C(A, B) is the collection of arrows from object A to object B, that is,

$$\mathcal{C}(A,B) := \left\{ \left. f \in \operatorname{Ar}(\mathcal{C}) \; \right| \: A \stackrel{f}{\longrightarrow} B \: \right\}.$$

Definition (continuation)

Notation. The collection C(A, B) is the collection of arrows from object A to object B, that is,

$$\mathcal{C}(A,B) := \left\{ \left. f \in \operatorname{Ar}(\mathcal{C}) \; \right| \; A \stackrel{f}{\longrightarrow} B \right\}.$$

Notation. The collection $\mathcal{C}(A, B)$ also will be denoted by $Mor_{\mathcal{C}}(A, B)$.

Definition (continuation)

Notation. The collection C(A, B) is the collection of arrows from object A to object B, that is,

$$\mathcal{C}(A,B) := \Big\{ f \in \operatorname{Ar}(\mathcal{C}) \ \Big| \ A \stackrel{f}{\longrightarrow} B \Big\}.$$

Notation. The collection $\mathcal{C}(A, B)$ also will be denoted by $Mor_{\mathcal{C}}(A, B)$.

Notation. If the collection C(A, B) is a set it is called a **hom-set** and it is denoted hom_C(A, B).

Definition (continuation)

Notation. The collection $\mathcal{C}(A, B)$ is the collection of arrows from object A to object B, that is,

$$\mathcal{C}(A,B) := \left\{ \left. f \in \operatorname{Ar}(\mathcal{C}) \; \right| \: A \stackrel{f}{\longrightarrow} B \:
ight\}.$$

Notation. The collection $\mathcal{C}(A, B)$ also will be denoted by $Mor_{\mathcal{C}}(A, B)$.

Notation. If the collection C(A, B) is a set it is called a **hom-set** and it is denoted hom_C(A, B).

Convention. All the collections C(A, B) are hom-sets in the textbook.

(continued on next slide)

Definition (continuation)

(iv) For all objects A, B, C, a composition map

```
\mathcal{C}_{A,B,C}: \mathcal{C}(A,B) \times \mathcal{C}(B,C) \to \mathcal{C}(A,C).
```

Notation. The map $C_{A,B,C}(f,g)$ is written $g \circ f$.

Definition (continuation)

(iv) For all objects A, B, C, a composition map

```
\mathcal{C}_{A,B,C}: \mathcal{C}(A,B) \times \mathcal{C}(B,C) \to \mathcal{C}(A,C).
```

Notation. The map $C_{A,B,C}(f,g)$ is written $g \circ f$.

(v) For all object A, an **identity** arrow

 $A \xrightarrow{\operatorname{id}_A} A.$

(continued on next slide)

Definition (continuation)

The above items must satisfy the following axioms, where arrow equality is a logical primitive.

Definition (continuation)

The above items must satisfy the following axioms, where arrow equality is a logical primitive. (i) Associativity law

For all arrows $A \xrightarrow{f} B$, $B \xrightarrow{g} C$, $C \xrightarrow{h} D$,

 $h \circ (g \circ f) = (h \circ g) \circ f.$

Definition of a Category

Definition (continuation)

The above items must satisfy the following axioms, where arrow equality is a logical primitive. (i) Associativity law

For all arrows $A \xrightarrow{f} B$, $B \xrightarrow{g} C$, $C \xrightarrow{h} D$,

 $h \circ (g \circ f) = (h \circ g) \circ f.$

(ii) Unit laws

For all arrow $A \xrightarrow{f} B$,

 $f \circ \mathrm{id}_A = f = \mathrm{id}_B \circ f.$

Definition of a Category

Remark

Some authors^{\dagger} state the unit laws in the following equivalent way:

For all arrows $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$,

 $id_B \circ f = f,$ $g \circ id_B = g.$

[†]E.g. [Asperti and Longo 1980; Goldblatt 2006; Mac Lane 1998]. Definition of a Category

Definition of a Category

Remark

Note that the axioms in the definition of category are generalised monoid axioms.

Commutativity of diagrams

A diagram commutes when every possible path from one object to other object is the same.

Basic cases

(i) Commutativity of a triangle

$$(h = g \circ f)$$

Basic cases

(v) Commutativity of a square

$$\left(g\circ f=k\circ h\right)$$

Example

Let $A \xrightarrow{f} B$, $B \xrightarrow{g} C$ and $C \xrightarrow{h} D$. The associativity of the composition is equivalent to say that the following diagram commutes.

$$\Bigl(h\circ (g\circ f)=(h\circ g)\circ f\Bigr)$$

Example

Let $A \xrightarrow{f} B$. The unit of the identity arrow is equivalent to say that the following diagram commutes.

$$\left(f \circ \mathrm{id}_A = f = \mathrm{id}_B \circ f\right)$$

Example

The category Set of sets and functions.

Example

Mathematical structures and structure preserving functions.

- ▶ **Pos** (partially ordered sets and monotone functions)
- ▶ Mon (monoids and monoid homomorphisms)
- **Grp** (groups and group homomorphisms)
- Top (topological spaces and continuous functions)

Example

Mathematical structures and structure preserving functions.

- ▶ **Pos** (partially ordered sets and monotone functions)
- Mon (monoids and monoid homomorphisms)
- Grp (groups and group homomorphisms)
- Top (topological spaces and continuous functions)

Exercise 3

Show that Pos, Mon, Grp and Top are categories (Exercise 6).

Remark

The arrows of a category do no have to be functions as shows the following example.

Example

The category \mathbf{Rel} .

- ► The objects are sets.
- The arrows $X \xrightarrow{R} Y$ are the relations $R \subseteq X \times Y$.
- The arrow composition is the relation composition. Given $X \xrightarrow{R} Y$ and $Y \xrightarrow{S} Z$ then

 $S \circ R := \{ (x, z) \in X \times Z \mid \text{there exists } y \in Y \text{ such as } (x, y) \in R \text{ and } (y, z) \in S \}.$

• The identity arrow on X is the equality relation on X, that is

$$\mathrm{id}_X := \{ (x, x) \in X \times X \mid x \in X \}.$$

Remark

The objects of a category do no have to be sets as show the following examples.

Example

The categories 1, 2, 3 and 4. The diagrams do not show the identity arrows.

Example

The categories 1, 2, 3 and 4. The diagrams do not show the identity arrows.

Examples of Categories

Example

The empty category. It has no objects nor arrows.

Example

Any monoid is a one-object category.

- Arrows: Elements of the monoid
- Composition: Monoid binary operation
- Identity arrow: Monoid unit

Example

One-object category from monoid $(\mathbb{N}, +, 0)$.

$\left(0 \right)$	+	n	=	n
1	+	1	=	2
1	+	2	=	3
			:	

Example

Any pre-ordered set (P, \preceq) is a category.

- \blacktriangleright Objects: Elements of P
- Arrows: There is an arrow $A \to B$ iff $A \preceq B$
- ▶ Composition: Binary relation \leq
- Identity arrow: The arrow $A \rightarrow A$ because $A \preceq A$

Example

Any pre-ordered set (P, \preceq) is a category.

- \blacktriangleright Objects: Elements of P
- Arrows: There is an arrow $A \to B$ iff $A \preceq B$
- ▶ Composition: Binary relation \leq
- Identity arrow: The arrow $A \rightarrow A$ because $A \preceq A$

Remark

Note that the above category has at most one arrow between any two objects.

Example

Any category with at most one arrow between any two objects is a pre-order.

- Elements of the pre-order: Objects of the category
- ▶ Binary relation: $A \preceq B$ iff there is an arrow $A \rightarrow B$

The relation \preceq is transitive because the composition of functions and it is reflexive because the identity arrows.

Example

A category for a simple functional programming language given by (adapted from [Pierce 1991]):

- ▶ Types: Nat, Bool, Unit, $\cdot \rightarrow \cdot$
- Built-in functions:

zero:Nat; true,false:Bool; unit:Unit.

(continued on next slide)

Example (continuation)

The category is given by:

- Objects: Types
- Arrows:
 - Built-in functions
 - The constants are arrows from Unit to the type of the constant
 - Add arrows required by arrow composition
- Identity arrows: Identity functions in each type
- Equating arrows that represent the same functions (according to the semantics of the language)

Example (continuation)

	Same functions
($\texttt{not} \circ \texttt{true} = \texttt{false}$
	$\texttt{not} \circ \texttt{false} = \texttt{true}$
	isZeroozero = true
	isZeroosucc = false
	$\mathtt{unit} = \mathtt{id}_{\mathtt{Unit}}$

Exercise 4

Show an example of a category from logic. See, e.g. [Awodey 2010, § 1.14. Example 10].

Example

 \mathbf{Hask} is the *idealised* category for the Haskell programming language.

- Objects: Haskell's (unlifted) types
- Arrows: Haskell's functions
- ► Composition:

(.) :: $(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$ g. f = $\x \rightarrow g$ (f x)

Identity arrow:

id :: a -> a id x = x

Exercise 5

Given some implementation of categories in Haskell, show two examples of categories in that implementation.

Monomorphisms

Definition

Let \mathcal{C} be a category and let $A \xrightarrow{f} B$ be an arrow in \mathcal{C} . The arrow f is **monic** (or a **mono-morphism**) iff

for all
$$C \xrightarrow{g,h} A$$
, $f \circ g = f \circ h$ implies $g = h$,

that is,

$$C \xrightarrow{g} A \xrightarrow{f} B$$
 implies $g = h$,

where the above diagram commutes.

Epimorphisms

Definition

Let \mathcal{C} be a category and let $A \xrightarrow{f} B$ be an arrow in \mathcal{C} . The arrow f is **epic** (or a **epimorphism**) iff

for all
$$B \xrightarrow{i, j} C$$
, $i \circ f = j \circ f$ implies $i = j$,

that is,

$$A \xrightarrow{f} B \xrightarrow{i} C$$
 implies $i = j$,

where the above diagram commutes.

Definition

Let \mathcal{C} be a category. An arrow $A \xrightarrow{i} B$ in \mathcal{C} is an **isomorphism** (or **iso**) iff there exists an arrow $B \xrightarrow{j} A$ in \mathcal{C} such that

$$j \circ i = \mathrm{id}_A$$
 and $i \circ j = \mathrm{id}_B$.

Definition

Let \mathcal{C} be a category. An arrow $A \xrightarrow{i} B$ in \mathcal{C} is an **isomorphism** (or **iso**) iff there exists an arrow $B \xrightarrow{j} A$ in \mathcal{C} such that

$$j \circ i = \mathrm{id}_A$$
 and $i \circ j = \mathrm{id}_B$.

The arrow j is the **inverse** of i and it is denoted by i^{-1} .

(continued on next slide)

Definition (continuation)

That is, an arrow $A \xrightarrow{i} B$ is an isomorphism iff there exists an arrow $B \xrightarrow{i^{-1}} A$ such that the following diagram commutes

$$egin{pmatrix} i^{-1} \circ i = \mathrm{id}_A \ i \circ i^{-1} = \mathrm{id}_B \end{pmatrix}$$

Notation

An isomorphism $i : A \to B$ is denoted by $i : A \xrightarrow{\cong} B$.

Notation

An isomorphism $i : A \to B$ is denoted by $i : A \xrightarrow{\cong} B$.

Definition

Two objects A and B are **isomorphic**, written $A \cong B$, iff there exists $i : A \xrightarrow{\cong} B$.

Theorem

If an arrow has inverse it is unique.

Exercise 6 Proof the previous theorem (Exercise 10).

Exercise 7

Show that \cong is an equivalence relation on the objects of a category (Exercise 11).

Example

Isomorphisms in Set and Rel correspond to one-one correspondences (bijections).

Example

Isomorphisms in \mathbf{Grp} correspond to group isomorphisms, in \mathbf{Pos} to order isomorphisms and in \mathbf{Top} to homeomorphisms.

Example

Recall that any monoid is a one-object category. Any group is a one-object category in which every arrow is an isomorphism.

Example

Recall that any monoid is a one-object category. Any group is a <u>one-object</u> category in which every arrow is an isomorphism.

Exercise 8

Verify the previous example.

Example

One-object category from monoid $(\mathbb{Z}, +, 0)$.

$$\begin{pmatrix} 0+n = n \\ 1+1 = 2 \\ 1+2 = 3 \\ \vdots \\ 1+-1 = 0 \\ 2+-2 = 0 \\ \vdots \end{pmatrix}$$

Definition

A groupoid is a category in which every arrow is an isomorphism.

Example

A group is one-object grupoid.

Definition

A setoid (X, \sim) is a set X equipped with an equivalence relation \sim .

Definition

A setoid (X, \sim) is a set X equipped with an equivalence relation \sim .

Example

Given a setoid (X, \sim) we can define an associated grupoid.

- Objects: Elements of X
- Arrows: There is an arrow $x \to y$ iff $x \sim y$.
- Composition: From transitivity of \sim .
- ▶ Identity arrow: From reflexivity of ~.

Theorem (Awodey [2010, Proposition 2.9])

If an arrow is iso then it is monic and epic.

Theorem (Awodey [2010, Proposition 2.9])

If an arrow is iso then it is monic and epic.

Exercise 9 Proof the previous theorem.

Example (Exercise 1.1.6.e)

In the category \mathbf{Mon} of monoids and monoid homomorphisms, consider the inclusion map

 $\mathbf{i}: (\mathbb{N}, +, 0) \to (\mathbb{Z}, +, 0)$

of natural numbers into the integers. Show that this arrow is both monic and epic. Is it an iso?

Example (Exercise 1.1.6.e)

In the category \mathbf{Mon} of monoids and monoid homomorphisms, consider the inclusion map

 $\mathbf{i}: (\mathbb{N}, +, 0) \to (\mathbb{Z}, +, 0)$

of natural numbers into the integers. Show that this arrow is both monic and epic. Is it an iso?

Solution Whiteboard.

Example (Exercise 1.1.6.e)

In the category \mathbf{Mon} of monoids and monoid homomorphisms, consider the inclusion map

 $\mathbf{i}: (\mathbb{N}, +, 0) \to (\mathbb{Z}, +, 0)$

of natural numbers into the integers. Show that this arrow is both monic and epic. Is it an iso?

Solution

Whiteboard.

Remark

As showed the previous exercises if an arrow is monic and epic does not imply that it is an iso.

Skeletal Categories

Definition (Awodey [2010])

A category is **skeletal** iff isomorphic objects are always equals.

Opposite Categories and Duality

Introduction

We get a category from other category by turning around the arrows and then we get a duality principle between both categories.

Opposite Categories

Definition

Let C be a category. The **opposite** (or **dual**) category C^{op} of C is defined by

$$\begin{aligned} \operatorname{Obj}(\mathcal{C}^{\mathsf{op}}) &:= \operatorname{Obj}(\mathcal{C}), \\ \mathcal{C}^{\mathsf{op}}(A^*, B^*) &:= \mathcal{C}(B, A), \\ &\operatorname{id}_{A^*} &:= (\operatorname{id}_A)^*, \\ &g^* \circ f^* &:= (f \circ g)^*, \end{aligned}$$

where we use * for distinguishing objects and arrows of the opposite category following [Awodey 2010].

Example

The left diagram in a category C corresponds to the right diagram in the category C^{op} .

Definition

Let S be a sentence. The dual statement $S^{\rm op}$ of S is the sentence obtained by reversing all the arrows of S.

Description

Let ${\mathcal C}$ be a category and S be a sentence. The ${\rm duality\ principle}$ states that

S holds in \mathcal{C} iff S^{op} holds in \mathcal{C}^{op} .

Example

Monic and epic are dual notions. That is, an arrow f is monic in C iff f^* is epic in C^{op} .

Definition

A subcategory ${\cal D}$ of a category ${\cal C}$ is a collection of some of the objects and arrows of ${\cal C}$

 $\begin{aligned} \operatorname{Obj}(\mathcal{D}) &\subseteq \operatorname{Obj}(\mathcal{C}), \\ \operatorname{Ar}(\mathcal{D}) &\subseteq \operatorname{Ar}(\mathcal{C}), \end{aligned}$

which is closed under $\operatorname{dom},$ $\operatorname{cod},$ $\operatorname{id},$ and $\circ,$ that is,

$$\begin{split} & f \in \operatorname{Ar}(\mathcal{D}) & \text{ implies } & \operatorname{dom} f, \operatorname{cod} f \in \operatorname{Obj}(\mathcal{D}), \\ & f \in \mathcal{D}(A,B), g \in \mathcal{D}(B,C) & \text{ implies } & g \circ f \in \mathcal{D}(A,C), \\ & A \in \operatorname{Obj}(\mathcal{D}) & \text{ implies } & \operatorname{id}_A \in \mathcal{D}(A,A). \end{split}$$

(continued on next slide)

Definition (continuation)

Additionally, the category $\ensuremath{\mathcal{D}}$ is

 \blacktriangleright a **full subcategory** of C iff

$$\mathcal{D}(A, B) = \mathcal{C}(A, B),$$
 for all $A, B \in \mathrm{Obj}(\mathcal{D}),$

► a **lluf subcategory** of C iff

 $\operatorname{Obj}(\mathcal{D}) = \operatorname{Obj}(\mathcal{C}).$

Example

 \mathbf{Grp} is a full subcategory of \mathbf{Mon} .

Example

 \mathbf{Grp} is a full subcategory of \mathbf{Mon} .

Example

 \mathbf{Set} is a lluf subcategory of \mathbf{Rel} .

References

References

Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3–94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).

- Goldblatt, R. [1979] (2006). Topoi. The Categorical Analysis of Logic. Revised edition. Dover Publications (cit. on p. 38).
- Mac Lane, S. [1971] (1998). Categories for the Working Mathematician. 2nd ed. Springer (cit. on pp. 10, 38).
 - Pierce, B. C. (1991). Basic Category Theory for Computer Scientists. Foundations of Computing Series. MIT Press (cit. on p. 61).
 - Zeng, W. J. (n.d.). A Subtle Introduction to Category Theory. (Cit. on pp. 53, 54).