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Preliminaries
Convention
The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems
on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos
2011].
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From Set Theory to Category Theory



‘Algebra’ of Functions
Definition
Let f : X → Y and g : Y → Z be two functions. The composite of g after f is the function
defined by

g ◦ f : X → Z := x 7→ g (f x ).

Diagram.

X Y

Z

f

g ◦ f
g
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‘Algebra’ of Functions
Remark
The textbook writes ‘g ◦ f(x)’ instead of ‘(g ◦ f) x’.
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‘Algebra’ of Functions
Theorem
Let f : X → Y , g : Y → Z and h : Z → W be three functions. Then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

That is, the composition of functions is associative.

(continued on next slide)
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‘Algebra’ of Functions

Theorem (continuation)
Diagrams.
(i)

X W

Y Z

f
g ◦ f

g

h

h ◦ (g ◦ f)
X W

Y Z

f

g

h
h ◦ g

(h ◦ g) ◦ f

h ◦ (g ◦ f) = (h ◦ g) ◦ f

(continued on next slide)
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‘Algebra’ of Functions

Theorem (continuation)
Diagrams.
(ii) In [Mac Lane 1998, p. 8].

X W

Y Z

f

g ◦ f

g

h
h ◦ g

h ◦ (g ◦ f) = (h ◦ g) ◦ f

(continued on next slide)
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‘Algebra’ of Functions
Theorem (continuation)
Diagrams.
(iii) In [Awodey 2010, p. 3].

X Y

Z W

f

g ◦ f
g

h ◦ g

h

h ◦ (g ◦ f) = (h ◦ g) ◦ f
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‘Algebra’ of Functions
Definition
Let X be a set. The identity function on X is defined by

idX : X → X := x 7→ x.
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‘Algebra’ of Functions
Theorem
Let f : X → Y be a function. Then

f ◦ idX = f = idY ◦ f.

That is, the identity functions are the unit for composition.

(continued on next slide)
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‘Algebra’ of Functions
Theorem (continuation)
Diagrams.
(i)

X X

Y

idX

f ◦ idX = f
f

X Y

Y

f

idY ◦ f = f
idY

(continued on next slide)
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‘Algebra’ of Functions
Theorem (continuation)
Diagrams.
(ii) In [Awodey 2010, p. 4].

X X

Y Y

idX

f
f

f

idY

f ◦ idX = f = idY ◦ f
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From Elements to Functions
Elements as functions
Let 1 := {∗} be an one-element set and let X be a set. For each x ∈ X we define the function

x : 1 → X := ∗ 7→ x.

Theorem
Let X be a set. The set X and the set of functions { x : 1 → X | x ∈ X } are isomorphic.
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From Set Theory to Category Theory
Definition
Let f : X → Y be a function. The function f is

injective iff for all x, x′ ∈ X, f x = f x′ implies x = x′

surjective iff for all y ∈ Y , there exists x ∈ X such that f x = y

monic iff for all g, h : Z → X, f ◦ g = f ◦ h implies g = h

epic iff for all i, j : Y → Z, i ◦ f = j ◦ f implies i = j

Remark
Nouns: Injection, surjection, monomorphism and epimorphism.
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From Set Theory to Category Theory
Theorem (Proposition 1)
Let f : X → Y . Then,
(i) the function f is injective iff f is monic,
(ii) the function f is surjective iff f is epic.

Exercise 1
Let f : X → Y be a function. Show that f is injective iff it is monic (Proposition 1.i).

Exercise 2
Let f : X → Y be a function. Show that f is surjective iff it is epic (Exercise 2).

From Set Theory to Category Theory 20/104



From Set Theory to Category Theory
Theorem (Proposition 1)
Let f : X → Y . Then,
(i) the function f is injective iff f is monic,
(ii) the function f is surjective iff f is epic.

Exercise 1
Let f : X → Y be a function. Show that f is injective iff it is monic (Proposition 1.i).

Exercise 2
Let f : X → Y be a function. Show that f is surjective iff it is epic (Exercise 2).

From Set Theory to Category Theory 21/104



From Functional Programming to Category Theory



From Functional Programming to Category Theory
Types, composition, identities, applicative and functional laws
Whiteboard.

Applicative laws

id x = x,

(g ◦ f) x = g (f x),
fst (x, y) = x,

⟨f, g⟩ x = (f x, g x).
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Definition of a Category
Definition
A category C consists of:
(i) A collection Obj(C) of objects.

Notation. Objects are denoted by A, B, C, . . .

(ii) A collection Ar(C) of arrows or morphisms.
Notation. Arrows are denoted by f, g, h, . . .

(continued on next slide)
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Definition of a Category
Definition (continuation)

(iii) Two mappings

dom : Ar(C) → Obj(C) (source),
cod : Ar(C) → Obj(C) (target).

These mappings assign to each arrow f its domain dom f and its codomain cod f .

Notation. An arrow f with dom f = A and cod f = B is written A
f−→ B or f : A → B.

(continued on next slide)
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Definition of a Category
Definition (continuation)
Notation. The collection C(A, B) is the collection of arrows from object A to object B, that is,

C(A, B) :=
{

f ∈ Ar(C)
∣∣∣∣ A

f−→ B

}
.

Notation. The collection C(A, B) also will be denoted by MorC(A, B).

Notation. If the collection C(A, B) is a set it is called a hom-set and it is denoted homC(A, B).

Convention. All the collections C(A, B) are hom-sets in the textbook.

(continued on next slide)
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Definition of a Category
Definition (continuation)

(iv) For all objects A,B,C, a composition map

CA,B,C : C(A, B) × C(B, C) → C(A, C).

Notation. The map CA,B,C (f, g) is written g ◦ f .

(v) For all object A, an identity arrow

A
idA−−→ A.

(continued on next slide)
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Definition of a Category
Definition (continuation)
The above items must satisfy the following axioms, where arrow equality is a logical primitive.

(i) Associativity law

For all arrows A
f−→ B, B

g−→ C, C
h−→ D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(ii) Unit laws

For all arrow A
f−→ B,

f ◦ idA = f = idB ◦ f.

Definition of a Category 35/104



Definition of a Category
Definition (continuation)
The above items must satisfy the following axioms, where arrow equality is a logical primitive.
(i) Associativity law

For all arrows A
f−→ B, B

g−→ C, C
h−→ D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(ii) Unit laws

For all arrow A
f−→ B,

f ◦ idA = f = idB ◦ f.

Definition of a Category 36/104



Definition of a Category
Definition (continuation)
The above items must satisfy the following axioms, where arrow equality is a logical primitive.
(i) Associativity law

For all arrows A
f−→ B, B

g−→ C, C
h−→ D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(ii) Unit laws

For all arrow A
f−→ B,

f ◦ idA = f = idB ◦ f.

Definition of a Category 37/104



Definition of a Category
Remark
Some authors† state the unit laws in the following equivalent way:

For all arrows A
f−→ B and B

g−→ C,

idB ◦ f = f,

g ◦ idB = g.

†E.g. [Asperti and Longo 1980; Goldblatt 2006; Mac Lane 1998].
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Definition of a Category
Remark
Note that the axioms in the definition of category are generalised monoid axioms.
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Diagrams in Categories
Commutativity of diagrams
A diagram commutes when every possible path from one object to other object is the same.
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Diagrams in Categories
Basic cases
(i) Commutativity of a triangle

A B

C

f

h g

(
h = g ◦ f

)
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Diagrams in Categories
Basic cases
(v) Commutativity of a square

A B

C D

f

h g

k

(
g ◦ f = k ◦ h

)
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Diagrams in Categories
Example
Let A

f−→ B, B
g−→ C and C

h−→ D. The associativity of the composition is equivalent to say
that the following diagram commutes.

A B

C D

f

g ◦ f
g

h ◦ g

h

(
h ◦ (g ◦ f) = (h ◦ g) ◦ f

)
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Diagrams in Categories
Example
Let A

f−→ B. The unit of the identity arrow is equivalent to say that the following diagram
commutes.

A A

B B

idA

f
f

f

idB

(
f ◦ idA = f = idB ◦ f

)
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Examples of Categories
Example
The category Set of sets and functions.
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Examples of Categories
Example
Mathematical structures and structure preserving functions.
▶ Pos (partially ordered sets and monotone functions)
▶ Mon (monoids and monoid homomorphisms)
▶ Grp (groups and group homomorphisms)
▶ Top (topological spaces and continuous functions)

Exercise 3
Show that Pos, Mon, Grp and Top are categories (Exercise 6).
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Examples of Categories
Remark
The arrows of a category do no have to be functions as shows the following example.
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Examples of Categories
Example
The category Rel.
▶ The objects are sets.

▶ The arrows X
R−→ Y are the relations R ⊆ X × Y .

▶ The arrow composition is the relation composition. Given X
R−→ Y and Y

S−→ Z then

S ◦ R := { (x, z) ∈ X × Z | there exists y ∈ Y such as (x, y) ∈ R and (y, z) ∈ S }.

▶ The identity arrow on X is the equality relation on X, that is

idX := { (x, x) ∈ X × X | x ∈ X }.
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Examples of Categories
Remark
The objects of a category do no have to be sets as show the following examples.
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Examples of Categories
Example
The categories 1, 2, 3 and 4. The diagrams do not show the identity arrows.

∗ ∗ ⋆

∗ ⋆

•

∗

⋆

•

†

1 2 3 4

Remark
The category n has n(n + 1)/2 arrows [Zeng n.d.].
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Examples of Categories
Example
The empty category. It has no objects nor arrows.
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Examples of Categories
Example
Any monoid is a one-object category.
▶ Arrows: Elements of the monoid
▶ Composition: Monoid binary operation
▶ Identity arrow: Monoid unit
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Examples of Categories
Example
One-object category from monoid (N, +, 0).

∗

0
1
2
3

... 
0 + n = n

1 + 1 = 2
1 + 2 = 3

...
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Examples of Categories
Example
Any pre-ordered set (P, ⪯) is a category.

▶ Objects: Elements of P

▶ Arrows: There is an arrow A → B iff A ⪯ B

▶ Composition: Binary relation ⪯
▶ Identity arrow: The arrow A → A because A ⪯ A

Remark
Note that the above category has at most one arrow between any two objects.
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Examples of Categories
Example
Any category with at most one arrow between any two objects is a pre-order.

▶ Elements of the pre-order: Objects of the category
▶ Binary relation: A ⪯ B iff there is an arrow A → B

The relation ⪯ is transitive because the composition of functions and it is reflexive
because the identity arrows.
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Examples of Categories
Example
A category for a simple functional programming language given by (adapted from [Pierce 1991]):

▶ Types: Nat, Bool, Unit, · → ·
▶ Built-in functions:

isZero : Nat → Bool (test for zero)
not : Bool → Bool (negation)

succ : Nat → Nat (successor)

▶ Constants
zero : Nat; true, false : Bool; unit : Unit.

(continued on next slide)
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Examples of Categories
Example (continuation)
The category is given by:

▶ Objects: Types
▶ Arrows:

▶ Built-in functions
▶ The constants are arrows from Unit to the type of the constant
▶ Add arrows required by arrow composition

▶ Identity arrows: Identity functions in each type
▶ Equating arrows that represent the same functions (according to the semantics of the

language)

(continued on next slide)
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Examples of Categories
Example (continuation)

Nat Bool

Unit

isZero

not ◦ isZero

idNat

not

idBool

succ

zero true
false

idUnit

Same functions
not ◦ true = false

not ◦ false = true

isZero ◦ zero = true

isZero ◦ succ = false

unit = idUnit
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Examples of Categories
Exercise 4
Show an example of a category from logic. See, e.g. [Awodey 2010, § 1.14. Example 10].
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Examples of Categories
Example
Hask is the idealised category for the Haskell programming language.

▶ Objects: Haskell’s (unlifted) types
▶ Arrows: Haskell’s functions
▶ Composition:

(.) :: (b -> c) -> (a -> b) -> a -> c
g . f = \x -> g (f x)

▶ Identity arrow:

id :: a -> a
id x = x
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Examples of Categories
Exercise 5
Given some implementation of categories in Haskell, show two examples of categories in that
implementation.
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Monomorphisms
Definition
Let C be a category and let A

f−→ B be an arrow in C. The arrow f is monic (or a mono-
morphism) iff

for all C
g, h−−−→ A, f ◦ g = f ◦ h implies g = h,

that is,

C A B implies g = h,
g

h

f

where the above diagram commutes.
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Epimorphisms
Definition
Let C be a category and let A

f−→ B be an arrow in C. The arrow f is epic (or a epimorphism)
iff

for all B
i, j−−→ C, i ◦ f = j ◦ f implies i = j,

that is,

A B C implies i = j,
f i

j

where the above diagram commutes.
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Isomorphisms
Definition
Let C be a category. An arrow A

i−→ B in C is an isomorphism (or iso) iff there exists an

arrow B
j−→ A in C such that

j ◦ i = idA and i ◦ j = idB.

The arrow j is the inverse of i and it is denoted by i−1.

(continued on next slide)
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(continued on next slide)
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Isomorphisms
Definition (continuation)

That is, an arrow A
i−→ B is an isomorphism iff there exists an arrow B

i−1
−−→ A such that the

following diagram commutes

A B

A B

i

idA
i−1

idB

i

(
i−1 ◦ i = idA

i ◦ i−1 = idB

)
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Isomorphisms
Notation
An isomorphism i : A → B is denoted by i : A

∼=−→ B.

Definition
Two objects A and B are isomorphic, written A ∼= B, iff there exists i : A

∼=−→ B.
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Isomorphisms
Theorem
If an arrow has inverse it is unique.

Exercise 6
Proof the previous theorem (Exercise 10).
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Isomorphisms
Exercise 7
Show that ∼= is an equivalence relation on the objects of a category (Exercise 11).
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Isomorphisms
Example
Isomorphisms in Set and Rel correspond to one-one correspondences (bijections).
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Isomorphisms
Example
Isomorphisms in Grp correspond to group isomorphisms, in Pos to order isomorphisms and in
Top to homeomorphisms.
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Isomorphisms
Example
Recall that any monoid is a one-object category. Any group is a one-object category in which
every arrow is an isomorphism.

Exercise 8
Verify the previous example.
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Isomorphisms
Example
Recall that any monoid is a one-object category. Any group is a one-object category in which
every arrow is an isomorphism.

Exercise 8
Verify the previous example.
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Isomorphisms
Example
One-object category from monoid (Z, +, 0).

∗0

1
2
3

...

0

-1
-2
-3
...



0 + n = n

1 + 1 = 2
1 + 2 = 3

...

1 + −1 = 0
2 + −2 = 0

...
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Groupoids
Definition
A groupoid is a category in which every arrow is an isomorphism.
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Groupoids
Example
A group is one-object grupoid.
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Groupoids
Definition
A setoid (X, ∼) is a set X equipped with an equivalence relation ∼.

Example
Given a setoid (X, ∼) we can define an associated grupoid.
▶ Objects: Elements of X

▶ Arrows: There is an arrow x → y iff x ∼ y.
▶ Composition: From transitivity of ∼.
▶ Identity arrow: From reflexivity of ∼.
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Monics, Epics and Isos
Theorem (Awodey [2010, Proposition 2.9])
If an arrow is iso then it is monic and epic.

Exercise 9
Proof the previous theorem.
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Monics, Epics and Isos
Example (Exercise 1.1.6.e)
In the category Mon of monoids and monoid homomorphisms, consider the inclusion map

i : (N, +, 0) → (Z, +, 0)

of natural numbers into the integers. Show that this arrow is both monic and epic. Is it an iso?

Solution
Whiteboard.

Remark
As showed the previous exercises if an arrow is monic and epic does not imply that it is an iso.
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Skeletal Categories
Definition (Awodey [2010])
A category is skeletal iff isomorphic objects are always equals.
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Opposite Categories and Duality
Introduction
We get a category from other category by turning around the arrows and then we get a duality
principle between both categories.
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Opposite Categories
Definition
Let C be a category. The opposite (or dual) category Cop of C is defined by

Obj(Cop) := Obj(C),
Cop(A∗, B∗) := C(B, A),

idA∗ := (idA)∗,

g∗ ◦ f∗ := (f ◦ g)∗,

where we use ∗ for distinguishing objects and arrows of the opposite category following [Awodey
2010].
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Opposite Categories
Example
The left diagram in a category C corresponds to the right diagram in the category Cop.

A B

C

f

g ◦ f
g

A∗ B∗

C∗

f∗

f∗ ◦ g∗ g∗
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The Duality Principle
Definition
Let S be a sentence. The dual statement Sop of S is the sentence obtained by reversing all the
arrows of S.

Description
Let C be a category and S be a sentence. The duality principle states that

S holds in C iff Sop holds in Cop.
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The Duality Principle
Example
Monic and epic are dual notions. That is, an arrow f is monic in C iff f∗ is epic in Cop.

Opposite Categories and Duality 97/104



Subcategories



Subcategories
Definition
A subcategory D of a category C is a collection of some of the objects and arrows of C

Obj(D) ⊆ Obj(C),
Ar(D) ⊆ Ar(C),

which is closed under dom, cod, id, and ◦, that is,

f ∈ Ar(D) implies dom f, cod f ∈ Obj(D),
f ∈ D(A, B), g ∈ D(B, C) implies g ◦ f ∈ D(A, C),

A ∈ Obj(D) implies idA ∈ D(A, A).

(continued on next slide)
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Subcategories
Definition (continuation)
Additionally, the category D is
▶ a full subcategory of C iff

D(A, B) = C(A, B), for all A, B ∈ Obj(D),

▶ a lluf subcategory of C iff
Obj(D) = Obj(C).
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Subcategories
Example
Grp is a full subcategory of Mon.

Example
Set is a lluf subcategory of Rel.
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Subcategories
Example
Grp is a full subcategory of Mon.

Example
Set is a lluf subcategory of Rel.
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