Category Theory and Functional Programming Functors

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

Introduction
Definition of a Functor
Examples of Functors
Functors in Haskell
Binary Functors
Small, Large and Locally Small Categories
The Category of Small Categories
Contravariance
Hom-Functors
Properties of Functors
References

Introduction

Introduction

Question
 What about of morphisms between categories?

Introduction

Question
What about of morphisms between categories?
Answer: Of course, them are functors.

Definition of a Functor

Definition of a Functor

Definition

A (covariant) functor $F: \mathcal{C} \rightarrow \mathcal{D}$ between categories \mathcal{C} and \mathcal{D} is a mapping of objects to objects and arrows to arrows, that is, ${ }^{\dagger}$

$$
\begin{aligned}
& F_{0}: \operatorname{Obj}(\mathcal{C}) \rightarrow \operatorname{Obj}(\mathcal{D}) \\
& F_{1}: \operatorname{Ar}(\mathcal{C}) \rightarrow \operatorname{Ar}(\mathcal{D})
\end{aligned}
$$

which for all objects A and arrows f and g, satisfies the functoriality conditions

$$
\begin{aligned}
F_{1}(g \circ f) & =\left(F_{1} g\right) \circ\left(F_{1} f\right) & & \text { (preservation of compositic } \\
F_{1} \operatorname{id}_{A} & =\operatorname{id}_{\left(F_{0} A\right)} & & \text { (preservation of identities) }
\end{aligned}
$$

[^0]
Definition of a Functor

Remark
The functor $F: \mathcal{C} \rightarrow \mathcal{D}$ maps objects and arrows of \mathcal{C} to objects and arrows of \mathcal{D}, respectively.

Definition of a Functor

Remark

The functor $F: \mathcal{C} \rightarrow \mathcal{D}$ preserves domains and codomains, identity arrows, and composition. It also maps each commutative diagram in \mathcal{C} into a commutative diagram in \mathcal{D}.

Definition of a Functor

Remark
Given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$, that is,

$$
\begin{aligned}
& F_{0}: \operatorname{Obj}(\mathcal{C}) \rightarrow \operatorname{Obj}(\mathcal{D}), \\
& F_{1}: \operatorname{Ar}(\mathcal{C}) \rightarrow \operatorname{Ar}(\mathcal{D}),
\end{aligned}
$$

for all A, B in $\operatorname{Obj}(\mathcal{C})$, there is the map

$$
F_{A, B}: \mathcal{C}(A, B) \rightarrow \mathcal{D}\left(F_{0} A, F_{0} B\right)
$$

and for all $f: A \rightarrow B$,

$$
F_{A, B} f: F_{0} A \rightarrow F_{0} B .
$$

Examples of Functors

Examples of Functors

Example

Let $\mathcal{P} S$ be the power set of the set S. The (covariant) power set functor
$P:$ Set \rightarrow Set, \quad is defined by

Examples of Functors

Example

Let $\mathcal{P} S$ be the power set of the set S. The (covariant) power set functor

$$
\begin{aligned}
& \quad P: \text { Set } \rightarrow \text { Set, } \quad \text { is defined by } \\
& P_{0}: \operatorname{Obj}(\text { Set }) \rightarrow \mathrm{Obj}(\text { Set }) \\
& P_{0} X:=\mathcal{P} X
\end{aligned}
$$

Examples of Functors

Example

Let $\mathcal{P} S$ be the power set of the set S. The (covariant) power set functor

$$
\begin{array}{ll}
\quad P: \text { Set } \rightarrow \text { Set, } & \text { is defined by } \\
P_{0}: \operatorname{Obj}(\text { Set }) \rightarrow \operatorname{Obj}(\text { Set }) & P_{1}: \operatorname{Ar}(\text { Set }) \rightarrow \operatorname{Ar}(\text { Set }) \\
P_{0} X:=\mathcal{P} X & P_{X, Y}: \operatorname{Set}(X, Y) \rightarrow \operatorname{Set}\left(P_{0} X, P_{0} Y\right) \\
& P_{X, Y} f: \mathcal{P} X \rightarrow \mathcal{P} Y \\
& P_{X, Y} f S:=f(S)=\{f(x) \mid x \in S\}
\end{array}
$$

(continued on next slide)

Examples of Functors

Example (continuation)

Let $X=\{0,1\}, Y=\{\emptyset, X\}$ and $f: X \rightarrow Y$ defined by $f(0)=\emptyset$ and $f(1)=X$. Then,

$$
\begin{aligned}
& P_{0}: \operatorname{Obj}(\text { Set }) \rightarrow \operatorname{Obj}(\text { Set }) \\
& P_{0} X:=\mathcal{P} X=\{\emptyset,\{0\},\{1\}, X\},
\end{aligned}
$$

$$
\begin{aligned}
& P_{X, Y} f: \mathcal{P} X \\
& \rightarrow \mathcal{P} Y \\
& P_{X, Y} f \emptyset \quad:=f(\emptyset)=\emptyset, \\
& P_{X, Y} f\{0\} \quad:=f(\{0\})=\{\emptyset\}, \\
& P_{X, Y} f\{1\} \quad:=f(\{1\})=\{X\}, \\
& P_{X, Y} f\{0,1\}:=f(\{0,1\})=\{\emptyset, X\} .
\end{aligned}
$$

Examples of Functors

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q}, respectively. A functor $F: \mathcal{P} \rightarrow \mathcal{Q}$ is defined by

Examples of Functors

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q}, respectively. A functor $F: \mathcal{P} \rightarrow \mathcal{Q}$ is defined by

$$
F_{0}: \operatorname{Obj}(\mathcal{P}) \rightarrow \operatorname{Obj}(\mathcal{Q})
$$

Examples of Functors

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q}, respectively. A functor $F: \mathcal{P} \rightarrow \mathcal{Q}$ is defined by

$$
\begin{aligned}
F_{0}: \operatorname{Obj}(\mathcal{P}) \rightarrow \operatorname{Obj}(\mathcal{Q}) \quad & F_{1}: \operatorname{Ar}(\mathcal{P}) \rightarrow \operatorname{Ar}(\mathcal{Q}) \\
& F_{A, B}: \mathcal{P}(A, B) \rightarrow \mathcal{Q}\left(F_{0} A, F_{0} B\right) \\
& F_{A, B} f: F_{0} A \rightarrow F_{0} B
\end{aligned}
$$

Examples of Functors

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q}, respectively. A functor $F: \mathcal{P} \rightarrow \mathcal{Q}$ is defined by

$$
\begin{aligned}
F_{0}: \operatorname{Obj}(\mathcal{P}) \rightarrow \operatorname{Obj}(\mathcal{Q}) \quad & F_{1}: \operatorname{Ar}(\mathcal{P}) \rightarrow \operatorname{Ar}(\mathcal{Q}) \\
& F_{A, B}: \mathcal{P}(A, B) \rightarrow \mathcal{Q}\left(F_{0} A, F_{0} B\right) \\
& F_{A, B} f: F_{0} A \rightarrow F_{0} B
\end{aligned}
$$

Since $\mathcal{P}(A, B)$ and $\mathcal{Q}\left(F_{0} A, F_{0} B\right)$ have at most an arrow, the map $F_{A, B}$ exists iff

$$
A \preceq B \quad \text { implies } \quad F_{0} A \preceq F_{0} B .
$$

Examples of Functors

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q}, respectively. A functor $F: \mathcal{P} \rightarrow \mathcal{Q}$ is defined by

$$
\begin{aligned}
F_{0}: \operatorname{Obj}(\mathcal{P}) \rightarrow \operatorname{Obj}(\mathcal{Q}) \quad & F_{1}: \operatorname{Ar}(\mathcal{P}) \rightarrow \operatorname{Ar}(\mathcal{Q}) \\
& F_{A, B}: \mathcal{P}(A, B) \rightarrow \mathcal{Q}\left(F_{0} A, F_{0} B\right) \\
& F_{A, B} f: F_{0} A \rightarrow F_{0} B
\end{aligned}
$$

Since $\mathcal{P}(A, B)$ and $\mathcal{Q}\left(F_{0} A, F_{0} B\right)$ have at most an arrow, the map $F_{A, B}$ exists iff

$$
A \preceq B \quad \text { implies } \quad F_{0} A \preceq F_{0} B .
$$

That is, a functor $F: \mathcal{P} \rightarrow \mathcal{Q}$ is just a monotone map which sends, if exists, the unique arrow $A \rightarrow B$ to the unique arrow $F_{0} A \rightarrow F_{0} B$.

Examples of Functors

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q}, respectively. A functor $F: \mathcal{P} \rightarrow \mathcal{Q}$ is defined by

$$
\begin{aligned}
F_{0}: \operatorname{Obj}(\mathcal{P}) \rightarrow \operatorname{Obj}(\mathcal{Q}) \quad & F_{1}: \operatorname{Ar}(\mathcal{P}) \rightarrow \operatorname{Ar}(\mathcal{Q}) \\
& F_{A, B}: \mathcal{P}(A, B) \rightarrow \mathcal{Q}\left(F_{0} A, F_{0} B\right) \\
& F_{A, B} f: F_{0} A \rightarrow F_{0} B
\end{aligned}
$$

Since $\mathcal{P}(A, B)$ and $\mathcal{Q}\left(F_{0} A, F_{0} B\right)$ have at most an arrow, the map $F_{A, B}$ exists iff

$$
A \preceq B \quad \text { implies } \quad F_{0} A \preceq F_{0} B .
$$

That is, a functor $F: \mathcal{P} \rightarrow \mathcal{Q}$ is just a monotone map which sends, if exists, the unique arrow $A \rightarrow B$ to the unique arrow $F_{0} A \rightarrow F_{0} B$.

Example from [Fong, Milewski and Spivak 2020, § 3.2.2].

Examples of Functors

Example

Let (M, \cdot, ϵ) and (N, \diamond, μ) be two monoids seen as categories, denoted \mathcal{M} and \mathcal{N}, respectively. Let $*$ be the only object in both categories. A functor $F: \mathcal{M} \rightarrow \mathcal{N}$ is defined by

Examples of Functors

Example

Let (M, \cdot, ϵ) and (N, \diamond, μ) be two monoids seen as categories, denoted \mathcal{M} and \mathcal{N}, respectively. Let $*$ be the only object in both categories. A functor $F: \mathcal{M} \rightarrow \mathcal{N}$ is defined by

$$
\begin{aligned}
& F_{0}: \operatorname{Obj}(\mathcal{M}) \rightarrow \operatorname{Obj}(\mathcal{N}) \\
& F_{0}:\{*\} \rightarrow\{*\} \\
& F_{0} *=*
\end{aligned}
$$

Examples of Functors

Example

Let (M, \cdot, ϵ) and (N, \diamond, μ) be two monoids seen as categories, denoted \mathcal{M} and \mathcal{N}, respectively. Let $*$ be the only object in both categories. A functor $F: \mathcal{M} \rightarrow \mathcal{N}$ is defined by

$$
\begin{array}{ll}
F_{0}: \operatorname{Obj}(\mathcal{M}) \rightarrow \operatorname{Obj}(\mathcal{N}) & F_{1}: \operatorname{Ar}(\mathcal{M}) \rightarrow \operatorname{Ar}(\mathcal{N}) \\
F_{0}:\{*\} \rightarrow\{*\} & F_{*, *}: \mathcal{P}(*, *) \rightarrow \mathcal{Q}\left(F_{0} *, F_{0} *\right) \\
F_{0} *=* & F_{*, *} f: * \rightarrow *
\end{array}
$$

Examples of Functors

Example

Let (M, \cdot, ϵ) and (N, \diamond, μ) be two monoids seen as categories, denoted \mathcal{M} and \mathcal{N}, respectively. Let $*$ be the only object in both categories. A functor $F: \mathcal{M} \rightarrow \mathcal{N}$ is defined by

$$
\begin{aligned}
& F_{0}: \operatorname{Obj}(\mathcal{M}) \rightarrow \operatorname{Obj}(\mathcal{N}) \\
& F_{0}:\{*\} \rightarrow\{*\} \\
& F_{0} *=*
\end{aligned}
$$

$$
F_{1}: \operatorname{Ar}(\mathcal{M}) \rightarrow \operatorname{Ar}(\mathcal{N})
$$

$$
F_{*, *}: \mathcal{P}(*, *) \rightarrow \mathcal{Q}\left(F_{0} *, F_{0} *\right)
$$

$$
F_{*, *} f: * \rightarrow *
$$

The functor F must satisfies:

$$
\begin{aligned}
F_{*, *}\left(m_{1} \cdot m_{2}\right) & =\left(F_{*, *} m_{1}\right) \diamond\left(F_{*, *} m_{2}\right), \quad \text { for all } m_{1}, m_{2} \text { in } \mathcal{M}, \\
F_{*, *} & \epsilon \mu .
\end{aligned}
$$

Examples of Functors

Example

Let (M, \cdot, ϵ) and (N, \diamond, μ) be two monoids seen as categories, denoted \mathcal{M} and \mathcal{N}, respectively. Let $*$ be the only object in both categories. A functor $F: \mathcal{M} \rightarrow \mathcal{N}$ is defined by

$$
\begin{aligned}
& F_{0}: \operatorname{Obj}(\mathcal{M}) \rightarrow \operatorname{Obj}(\mathcal{N}) \\
& F_{0}:\{*\} \rightarrow\{*\} \\
& F_{0} *=*
\end{aligned}
$$

$$
F_{1}: \operatorname{Ar}(\mathcal{M}) \rightarrow \operatorname{Ar}(\mathcal{N})
$$

$$
F_{*, *}: \mathcal{P}(*, *) \rightarrow \mathcal{Q}\left(F_{0} *, F_{0} *\right)
$$

$$
F_{*, *} f: * \rightarrow *
$$

The functor F must satisfies:

$$
\begin{aligned}
F_{*, *}\left(m_{1} \cdot m_{2}\right) & =\left(F_{*, *} m_{1}\right) \diamond\left(F_{*, *} m_{2}\right), \quad \text { for all } m_{1}, m_{2} \text { in } \mathcal{M}, \\
F_{*, *} & \epsilon \mu .
\end{aligned}
$$

That is, a functor $F: \mathcal{M} \rightarrow \mathcal{N}$ is just a monoid homomorphism.

Examples of Functors

Example

The identity functor $\operatorname{Id}_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C}$ in a category \mathcal{C} is the functor that maps each object and each arrow of \mathcal{C} to itself.

Examples of Functors

Example
Let $F:$ Mon \rightarrow Set be the forgetful functor which
(i) sends a monoid to its set of elements and
(ii) sends a homomorphism between monoids to the corresponding function between sets.

Examples of Functors

Example

Let $[S]$ be the set of all finite lists of elements of S. The list functor

$$
\text { List : Set } \rightarrow \text { Set, } \quad \text { is defined by }
$$

Examples of Functors

Example

Let $[S]$ be the set of all finite lists of elements of S. The list functor

$$
\text { List : Set } \rightarrow \text { Set, } \quad \text { is defined by }
$$

List $_{0}: \operatorname{Obj}($ Set $) \rightarrow \mathrm{Obj}($ Set $)$
List $_{0} X:=[X]$

Examples of Functors

Example

Let $[S]$ be the set of all finite lists of elements of S. The list functor

$$
\begin{aligned}
& \quad \text { List }: \text { Set } \rightarrow \text { Set, } \quad \text { is defined by } \\
& \text { List }_{0}: \operatorname{Obj}(\text { Set }) \rightarrow \operatorname{Obj}(\text { Set }) \quad \\
& \operatorname{List}_{0} X:=[X] \quad \\
& \\
& \\
& \operatorname{List}_{X, Y}: \operatorname{Ar}(\mathbf{S e t}) \rightarrow \operatorname{Set}(X, Y) \rightarrow \operatorname{Set}(\text { Set }) \\
& \\
& \\
& \operatorname{List}_{X, Y} f:[X] \rightarrow[Y] \\
& \\
& \\
& \left.\operatorname{List}_{X, Y} X, \operatorname{List}_{0} Y\right) \\
&
\end{aligned}
$$

Examples of Functors

Example
The free monoid functor MList : Set \rightarrow Mon maps every set X to the free monoid over X.

Examples of Functors

Example
The free monoid functor MList : Set \rightarrow Mon maps every set X to the free monoid over X. Let $(-) *(-)$ be the list concatenation function and let ε be the empty list, the functor is defined by

Examples of Functors

Example

The free monoid functor MList : Set \rightarrow Mon maps every set X to the free monoid over X. Let $(-) *(-)$ be the list concatenation function and let ε be the empty list, the functor is defined by

$$
\begin{aligned}
\text { MList }_{0} & : \operatorname{Obj}(\text { Set }) \rightarrow \mathrm{Obj}(\text { Mon }) \\
\text { MList }_{0} X & :=\left(\text { List }_{0} X, *, \varepsilon\right) \\
& =([X], *, \varepsilon)
\end{aligned}
$$

Examples of Functors

Example

The free monoid functor MList : Set \rightarrow Mon maps every set X to the free monoid over X.
Let $(-) *(-)$ be the list concatenation function and let ε be the empty list, the functor is defined by

$$
\begin{array}{rlrl}
\text { MList }_{0} & : \operatorname{Obj}(\mathbf{S e t}) \rightarrow \operatorname{Obj}(\mathbf{M o n}) & \text { MList }_{1}: \operatorname{Ar}(\mathbf{S e t}) \rightarrow \operatorname{Ar}(\mathbf{M o n}) \\
\text { MList }_{0} X:=\left(\operatorname{List}_{0} X, *, \varepsilon\right) & \operatorname{MList}_{X, Y}: \operatorname{Set}(X, Y) \rightarrow \operatorname{Mon}\left(\text { MList }_{0} X, \text { MList }_{0} Y\right) \\
& =([X], *, \varepsilon) & \operatorname{MList}_{X, Y} f:([X], *, \varepsilon) \rightarrow([Y], *, \varepsilon) \\
& \operatorname{MList}_{X, Y} f\left[x_{1}, x_{2}, \ldots, x_{n}\right]:=\operatorname{List}_{X, Y} f\left[x_{1}, x_{2}, \ldots, x_{n}\right]
\end{array}
$$

Exercises

Exercise 1
 Verify that functors $F: \mathbf{2}_{\rightrightarrows} \rightarrow$ Set correspond to directed graphs (textbook, Exercise 45).

Functors in Haskell

Functors in Haskell

Introduction via Maybe (Whiteboard).

Functors in Haskell

Introduction via Maybe
(Whiteboard).
The typeclass Functor

```
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```


Functors in Haskell

Example

The polymorphic type constructor Maybe is a functor whose instance is defined by

```
instance Functor Maybe where
    fmap _ Nothing = Nothing
    fmap f (Just a) = Just (f a)
```


Functors in Haskell

Example

The polymorphic type constructor Maybe is a functor whose instance is defined by

```
instance Functor Maybe where
    fmap _ Nothing = Nothing
    fmap f (Just a) = Just (f a)
```


Exercise 2

Show that the Maybe functor satisfies the functoriality conditions.

Functors in Haskell

Example

ReadInt is a type constructor that turns any type a into a new type that reads a value of Int to create a value of a [Fong, Milewski and Spivak 2020, Example 3.41].

```
data ReadInt a = MkReadInt (Int -> a)
```


Functors in Haskell

Example

ReadInt is a type constructor that turns any type a into a new type that reads a value of Int to create a value of a [Fong, Milewski and Spivak 2020, Example 3.41].

```
data ReadInt a = MkReadInt (Int -> a)
```

ReadInt is a functor via the following instance.

```
instance Functor ReadInt where
    fmap f (MkReadInt g) = MkReadInt (f . g)
```


Functors in Haskell

Example
The (binary) function type (->) :: a $\rightarrow>$ b \rightarrow (a $->$ b) is a functor.
instance Functor ((->) a) where fmap f g $=f$. g

Note that fmap : : (b $->\mathrm{c})$-> (a $->\mathrm{b})$-> ($\mathrm{a}->\mathrm{c})$.

Functors in Haskell

Exercise 3
To define an instance of Functor for the (binary) product type (,) : : a $\rightarrow \mathrm{b}$-> (a, b).

Functors in Haskell

Example

Recall that terminal object (unit type) in Haskell is () : : (). We can define a constant functor by

```
data CUnit a = MkCU ()
instance Functor CUnit where
    fmap f (MkCU ()) = MkCU ()
```


Functors in Haskell

Exercise 4

Given a constant 'functor' defined by

```
data CBool a = MkCB Bool
    instance Functor CBool where
    fmap f (MkCB True) = MkCB False
    fmap f (MkCB False) = MkCB True
```

Is CBool really a functor?

Functors in Haskell

Exercise 5

We define a constant functor by

```
data CInt a = MkCI Int
```

Show that the polymorphic type constructor CInt can be given the structure of a functor by saying how it lifts morphisms. That is, provide a Haskell function mapCInt of the type (a -> b) -> (CInt a \rightarrow CInt b) [Fong, Milewski and Spivak 2020, Exercise 3.46].

Functors in Haskell

Exercise 6

For each of the following type constructors, define two versions of fmap, one of which has a corresponding functor Hask \rightarrow Hask, and one of which does not [Fong, Milewski and Spivak 2020, Exercise 3.48].
(i) data WithString $\mathrm{a}=$ WithStr (a, String)
(ii) data ConstStr a = ConstStr String
(iii) data List a = Nil | Cons (a, List a)

Binary Functors

The Product Category

Definition

Let \mathcal{C} and \mathcal{D} be two categories. The product category $\mathcal{C} \times \mathcal{D}$ is defined by:
(i) Objects: (C, D), where C and D are objects in \mathcal{C} and \mathcal{D}, respectively.
(ii) Arrows: $(C, D) \xrightarrow{(f, g)}\left(C^{\prime}, D^{\prime}\right)$, where $C \xrightarrow{f} C^{\prime}$ and $D \xrightarrow{g} D^{\prime}$ are arrows in \mathcal{C} and \mathcal{D}, respectively.
(iii) Composition

$$
\left(f^{\prime}, g^{\prime}\right) \circ(f, g):=\left(f^{\prime} \circ f, g^{\prime} \circ g\right) .
$$

(iv) Identities

$$
\operatorname{id}_{(C, D)}:=\left(\mathrm{id}_{C}, \mathrm{id}_{D}\right)
$$

Definition of a Binary Functor

Definition

Let \mathcal{C}, \mathcal{D} and \mathcal{E} be three categories. A binary functor (or bifunctor) is a functor whose domain is a product category, that is, a binary functor from $\mathcal{C} \times \mathcal{D}$ to \mathcal{E} is a functor

$$
F: \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{E}
$$

Example of Binary Functors

Example
The projection functors $\mathcal{C} \stackrel{\pi_{1}}{\longleftrightarrow} \mathcal{C} \times \mathcal{D} \xrightarrow{\pi_{2}} \mathcal{D}$ are binary functors.

Example of Binary Functors

Example

The projection functors $\mathcal{C} \stackrel{\pi_{1}}{\leftrightarrows} \mathcal{C} \times \mathcal{D} \xrightarrow{\pi_{2}} \mathcal{D}$ are binary functors.
(i) For $\pi_{1}: \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{C}$ we have:

$$
\begin{aligned}
& \left(\pi_{1}\right)_{0}: \operatorname{Obj}(\mathcal{C} \times \mathcal{D}) \rightarrow \operatorname{Obj}(\mathcal{C}) \\
& \left(\pi_{1}\right)_{0}(C, D):=C \\
& \left(\pi_{1}\right)_{1}: \operatorname{Ar}(\mathcal{C} \times \mathcal{D}) \rightarrow \operatorname{Ar}(\mathcal{C}) \\
& \left(\pi_{1}\right)_{(C, D),\left(C^{\prime}, D^{\prime}\right)}: \operatorname{Mor}_{\mathcal{C} \times \mathcal{D}}\left((C, D),\left(C^{\prime}, D^{\prime}\right)\right) \rightarrow \operatorname{Mor}_{\mathcal{C}}\left(\left(\pi_{1}\right)_{0}(C, D),\left(\pi_{1}\right)_{0}\left(C^{\prime}, D^{\prime}\right)\right), \\
& \left(\pi_{1}\right)_{(C, D),\left(C^{\prime}, D^{\prime}\right)}(f, g): C \rightarrow C^{\prime} \\
& \left(\pi_{1}\right)_{(C, D),\left(C^{\prime}, D^{\prime}\right)}(f, g):=f
\end{aligned}
$$

Example of Binary Functors

Example

The projection functors $\mathcal{C} \stackrel{\pi_{1}}{\leftrightarrows} \mathcal{C} \times \mathcal{D} \xrightarrow{\pi_{2}} \mathcal{D}$ are binary functors.
(i) For $\pi_{1}: \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{C}$ we have:

$$
\begin{aligned}
& \left(\pi_{1}\right)_{0}: \operatorname{Obj}(\mathcal{C} \times \mathcal{D}) \rightarrow \operatorname{Obj}(\mathcal{C}) \\
& \left(\pi_{1}\right)_{0}(C, D):=C \\
& \left(\pi_{1}\right)_{1}: \operatorname{Ar}(\mathcal{C} \times \mathcal{D}) \rightarrow \operatorname{Ar}(\mathcal{C}) \\
& \left(\pi_{1}\right)_{(C, D),\left(C^{\prime}, D^{\prime}\right)}: \operatorname{Mor}_{\mathcal{C} \times \mathcal{D}}\left((C, D),\left(C^{\prime}, D^{\prime}\right)\right) \rightarrow \operatorname{Mor}_{\mathcal{C}}\left(\left(\pi_{1}\right)_{0}(C, D),\left(\pi_{1}\right)_{0}\left(C^{\prime}, D^{\prime}\right)\right), \\
& \left(\pi_{1}\right)_{(C, D),\left(C^{\prime}, D^{\prime}\right)}(f, g): C \rightarrow C^{\prime} \\
& \left(\pi_{1}\right)_{(C, D),\left(C^{\prime}, D^{\prime}\right)}(f, g):=f
\end{aligned}
$$

(ii) Similarly for $\pi_{2}: \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{D}$.

The Product Functor

Definition

Let \mathcal{C} be a category with binaries products, and let $\mathcal{C} \times \mathcal{C}$ be the product category of \mathcal{C} with itself. The product functor $\times: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ is a binary functor defined by

The Product Functor

Definition
Let \mathcal{C} be a category with binaries products, and let $\mathcal{C} \times \mathcal{C}$ be the product category of \mathcal{C} with itself. The product functor $\times: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ is a binary functor defined by

$$
\begin{aligned}
& \times_{0}: \operatorname{Obj}(\mathcal{C} \times \mathcal{C}) \rightarrow \operatorname{Obj}(\mathcal{C}) \\
& \times_{0}(A, B):=A \times B \quad(\text { binary product }) \\
& \times_{1}: \operatorname{Ar}(\mathcal{C} \times \mathcal{C}) \rightarrow \operatorname{Ar}(\mathcal{C}) \\
& \times_{\left(A, A^{\prime}\right),\left(B, B^{\prime}\right)}: \operatorname{Mor}_{\mathcal{C} \times \mathcal{C}}\left(\left(A, A^{\prime}\right),\left(B, B^{\prime}\right)\right) \rightarrow \operatorname{Mor}_{\mathcal{C}}\left(\times_{0}\left(A, A^{\prime}\right), \times_{0}\left(B, B^{\prime}\right)\right) \\
& \times_{\left(A, A^{\prime}\right),\left(B, B^{\prime}\right)}(f, g): A \times A^{\prime} \rightarrow B \times B^{\prime} \\
& \times_{\left(A, A^{\prime}\right),\left(B, B^{\prime}\right)}(f, g):=f \times g \quad \text { (product morphish) }
\end{aligned}
$$

where $f \times g:=\left\langle f \circ \pi_{1}, g \circ \pi_{2}\right\rangle$.

The Product Functor

Definition (continuation)
That is, both squares in the following diagram commute.

$$
\binom{f \circ \pi_{1}=\pi_{1} \circ(f \times g)}{g \circ \pi_{2}=\pi_{2} \circ(f \times g)}
$$

N-Ary Functors

Remark
Binary functors can be generalised to n-ary functors.

Small, Large and Locally Small Categories

Small and Large Categories

Introduction

Before defining a category of categories, we need to classify the categories in small and large for avoiding that it be an object of itself.

Small and Large Categories

Definition

A category is small iff both the collection of its objects and the collection of its arrows are sets. Otherwise, the category is large [Awodey 2010].

Small and Large Categories

Example

The finite categories $\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}$, a monoid viewed as a category, and a pre-order viewed as a category are small categories.

Small and Large Categories

Example

The finite categories $\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}$, a monoid viewed as a category, and a pre-order viewed as a category are small categories.

Example
The categories Set, Pos, Mon, Grp and Top are large categories.

Locally Small Categories

Definition
A category \mathcal{C} is locally small iff for all objects A, B the collection $\mathcal{C}(A, B)$ is a set [Awodey 2010].

Locally Small Categories

Definition

A category \mathcal{C} is locally small iff for all objects A, B the collection $\mathcal{C}(A, B)$ is a set [Awodey 2010].

Remark

- Recall from the previous conventions that if the collection $\mathcal{C}(A, B)$ is a set it is called a hom-set and it is denoted $\operatorname{hom}_{\mathcal{C}}(A, B)$.
- Also recall that in the textbook all the collections $\mathcal{C}(A, B)$ are hom-sets.

Locally Small Categories

Example
Any small category is locally small.

Locally Small Categories

Example

Any small category is locally small.
Example
The categories Set, Pos, Mon, Grp and Top are locally small categories.

The Category of Small Categories

The Category of Small Categories

Definition
The category Cat is the category of small categories:
(i) Objects: Small categories
(ii) Arrows: Functors
(continued on next slide)

The Category of Small Categories

Definition (continuation)
(iii) Composition of functors

Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{E}$ two functors, then

$$
\begin{array}{ll}
G \circ F & : \mathcal{C} \rightarrow \mathcal{E} \\
(G \circ F)_{0} & : \operatorname{Obj}(\mathcal{C}) \rightarrow \operatorname{Obj}(\mathcal{E}) \\
(G \circ F)_{0} A & :=G_{0}\left(F_{0} A\right), \\
(G \circ F)_{1} & : \operatorname{Ar}(\mathcal{C}) \rightarrow \operatorname{Ar}(\mathcal{E}) \\
(G \circ F)_{A, B} & : \mathcal{C}(A, B) \rightarrow \mathcal{E}\left((G \circ F)_{0} A,(G \circ F)_{0} B\right) \\
(G \circ F)_{A, B} f: G_{0}\left(F_{0} A\right) \rightarrow G_{0}\left(F_{0} B\right) \\
(G \circ F)_{A, B} f:=G_{1}\left(F_{1} f\right) .
\end{array}
$$

The Category of Small Categories

Definition (continuation)
(iii) Composition of functors

Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{E}$, then

$$
G \circ F: \mathcal{C} \rightarrow \mathcal{E}:= \begin{cases}A & \mapsto G(F A), \\ f & \mapsto G(F f) .\end{cases}
$$

The Category of Small Categories

Definition (continuation)
(iii) Composition of functors

Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{E}$, then

$$
G \circ F: \mathcal{C} \rightarrow \mathcal{E}:= \begin{cases}A & \mapsto G(F A), \\ f & \mapsto G(F f)\end{cases}
$$

(iv) Identity functors

$$
\operatorname{id}_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C}:= \begin{cases}A & \mapsto A \\ f & \mapsto f\end{cases}
$$

The Category of Small Categories

Remark
The category Cat is large and therefore it is not object of itself.

Contravariance

Introduction

Description

A covariant functor F preserves the direction of arrows, that is,

$$
F_{1}(f: A \rightarrow B): F_{0} A \rightarrow F_{0} B
$$

A contravariant functor G reverses the direction of arrows, that is,

$$
G_{1}(f: A \rightarrow B): G_{0} B \rightarrow G_{0} A .
$$

Contravariant Functors

Definition

Let \mathcal{C} and \mathcal{D} be two categories. A contravariant functor G from \mathcal{C} to \mathcal{D} is a functor

$$
\begin{array}{rlr}
G: & : \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{D}\left(\operatorname{or} \mathcal{C} \rightarrow \mathcal{D}^{\mathrm{op}}\right) & \\
G_{0}: \operatorname{Obj}\left(\mathcal{C}^{\mathrm{op}}\right) \rightarrow \operatorname{Obj}(\mathcal{D}) & \text { (object-map) } \\
G_{1}: \operatorname{Ar}\left(\mathcal{C}^{\mathrm{op}}\right) \rightarrow \operatorname{Ar}(\mathcal{D}) & \text { (arrow-map) } \\
& G_{A, B}: \mathcal{C}^{\mathrm{op}}(A, B) \rightarrow \mathcal{D}\left(G_{0} B, G_{0} A\right) \\
& G_{A, B} f: G_{0} B \rightarrow G_{0} A \\
G_{1}(g \circ f)=\left(G_{1} f\right) \circ\left(G_{1} g\right) & \text { (preservation of composition) } \\
G_{1}\left(\operatorname{id}_{A}\right)=\operatorname{id}_{\left(G_{0} A\right)} \quad \text { (preservation of identities) }
\end{array}
$$

Contravariant Functors

Example

Let $\mathcal{P} S$ be the power set of the set S. The contravariant power set functor

$$
P^{\mathrm{op}}: \mathbf{S e t}^{\mathrm{op}} \rightarrow \mathbf{S e t}, \quad \text { is defined by }
$$

Contravariant Functors

Example

Let $\mathcal{P} S$ be the power set of the set S. The contravariant power set functor

$$
P^{\mathrm{op}}: \text { Set }^{\mathrm{op}} \rightarrow \mathbf{S e t}, \quad \text { is defined by }
$$

$$
\begin{aligned}
& P_{0}^{\mathrm{op}}: \operatorname{Obj}\left(\text { Set }^{\mathrm{op}}\right) \rightarrow \operatorname{Obj}(\text { Set }) \\
& P_{0}^{\mathrm{op}} X:=\mathcal{P} X
\end{aligned}
$$

Contravariant Functors

Example

Let $\mathcal{P} S$ be the power set of the set S. The contravariant power set functor

$$
P^{\mathrm{op}}: \boldsymbol{S e t}^{\mathrm{op}} \rightarrow \mathbf{S e t}, \quad \text { is defined by }
$$

$$
\begin{aligned}
& P_{0}^{\mathrm{op}}: \mathrm{Obj}\left(\mathbf{S e t}^{\mathrm{op}}\right) \rightarrow \mathrm{Obj}(\text { Set }) \\
& P_{0}^{\mathrm{op}} X:=\mathcal{P} X
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}^{\mathrm{op}}: \operatorname{Ar}\left(\operatorname{Set}^{\mathrm{op}}\right) \rightarrow \operatorname{Ar}(\mathbf{S e t}) \\
& P_{X, Y}^{\mathrm{op}}: \boldsymbol{\operatorname { S e t }}^{\mathrm{op}}(X, Y) \rightarrow \boldsymbol{\operatorname { S e t }}\left(P_{0}^{\mathrm{op}} Y, P_{0}^{\mathrm{op}} X\right) \\
& P_{X, Y}^{\mathrm{op}} f: \mathcal{P} Y \rightarrow \mathcal{P} X \\
& P_{X, Y}^{\mathrm{op}} f T:=f^{-1}(T)=\{x \in X \mid f(x) \in T\}
\end{aligned}
$$

Hom-Functors

Hom-Functors

Definition (first notation)
Let \mathcal{C} be a locally small category and let A be an object of \mathcal{C}. The covariant Set-valued hom-functor $\mathcal{C}(A,-)$ is defined by

$$
\begin{aligned}
& \mathcal{C}(A,-): \mathcal{C} \rightarrow \text { Set }, \\
& \mathcal{C}(A,-)_{0}: \operatorname{Obj}(\mathcal{C}) \rightarrow \operatorname{Obj}(\text { Set }) \\
& \mathcal{C}(A, C)_{0}:=\mathcal{C}(A, C) \\
& \mathcal{C}(A,-)_{1}: \operatorname{Ar}(\mathcal{C}) \rightarrow \operatorname{Ar}(\text { Set }) \\
& \mathcal{C}(A,-)_{C, D}: \mathcal{C}(C, D) \rightarrow \operatorname{Set}\left(\mathcal{C}(A,-)_{0} C, \mathcal{C}(A,-)_{0} D\right) \\
& \mathcal{C}(A, f)_{C, D}: \mathcal{C}(A, C) \rightarrow \mathcal{C}(A, D) \\
& \mathcal{C}(A, f)_{C, D} g:=f \circ g .
\end{aligned}
$$

Hom-Functors

Definition (first notation)
Let \mathcal{C} be a (locally small) category and let B be an object of \mathcal{C}. The contravariant Set-valued hom-functor $\mathcal{C}(-, B)$ is defined by

$$
\begin{aligned}
& \mathcal{C}(-, B): \mathcal{C}^{\text {op }} \rightarrow \text { Set }, \\
& \mathcal{C}(-, B)_{0}: \operatorname{Obj}\left(\mathcal{C}^{\mathrm{op}}\right) \rightarrow \operatorname{Obj}(\text { Set }) \\
& \mathcal{C}(C, B)_{0}:=\mathcal{C}(C, B), \\
& \mathcal{C}(-, B)_{1}: \operatorname{Ar}\left(\mathcal{C}^{\mathrm{op}}\right) \rightarrow \operatorname{Ar}(\text { Set }) \\
& \mathcal{C}(-, B)_{C, D}: \mathcal{C}^{\mathrm{op}}(C, D) \rightarrow \operatorname{Set}\left(\mathcal{C}(-, B)_{0} D, \mathcal{C}(-, B)_{0} C\right) \\
& \mathcal{C}(f, B)_{C, D}: \mathcal{C}(D, B) \rightarrow \mathcal{C}(C, B) \\
& \mathcal{C}(f, B)_{C, D} g:=g \circ f .
\end{aligned}
$$

Hom-Functors

Exercise 7

Let \mathcal{C} be a (locally small) category. Spell out the definition of the set-valued hom-functor $\mathcal{C}(-,-): \mathcal{C}^{\text {op }} \times \mathcal{C} \rightarrow$ Set. Verify carefully that it is a functor (textbook, Exercise 47).

Hom-Functors

Notation

Recall that if \mathcal{C} is a locally small category the collection of arrows of an object A to an object B is a set and it is denoted by $\operatorname{hom}_{\mathcal{C}}(A, B)$, that is,

$$
\operatorname{hom}_{\mathcal{C}}(A, B):=\{f \in \operatorname{Ar}(\mathcal{C}) \mid A \xrightarrow{f} B\}=: \mathcal{C}(A, B)
$$

Hom-Functors

Definition (second notation)
Let \mathcal{C} be a locally small category and let A be an object of \mathcal{C}. The covariant Set-valued hom-functor $\operatorname{hom}_{\mathcal{C}}(A,-)$ is defined by

$$
\begin{aligned}
& \operatorname{hom}_{\mathcal{C}}(A,-): \mathcal{C} \rightarrow \text { Set, } \\
& \operatorname{hom}_{\mathcal{C}}(A,-)_{0}: \operatorname{Obj}(\mathcal{C}) \rightarrow \operatorname{Obj}(\text { Set }) \\
& \operatorname{hom}_{\mathcal{C}}(A, C)_{0}:=\operatorname{hom} \\
& \mathcal{C} \\
& (A, C) \\
& \operatorname{hom}_{\mathcal{C}}(A,-)_{1}: \operatorname{Ar}(\mathcal{C}) \rightarrow \operatorname{Ar}(\text { Set }) \\
& \operatorname{hom}_{\mathcal{C}}(A,-)_{C, D}: \operatorname{hom}_{\mathcal{C}}(C, D) \rightarrow \operatorname{Set}\left(\operatorname{hom}_{\mathcal{C}}(A, C), \operatorname{hom}_{\mathcal{C}}(A, D)\right) \\
& \operatorname{hom}_{\mathcal{C}}(A, f: C \rightarrow D): \operatorname{hom}_{\mathcal{C}}(A, C) \rightarrow \operatorname{hom}_{\mathcal{C}}(A, D) \\
& \operatorname{hom}_{\mathcal{C}}(A, f: C \rightarrow D) g:=f \circ g
\end{aligned}
$$

Hom-Functors

Definition (second notation)
Let \mathcal{C} be a (locally small) category and let B be an object of \mathcal{C}. The contravariant Set-valued hom-functor $\operatorname{hom}_{\mathcal{C}}(-, B)$ is defined by

$$
\begin{aligned}
& \operatorname{hom}_{\mathcal{C}}(-, B): \mathcal{C}^{\text {op }} \rightarrow \text { Set } \\
& \operatorname{hom}_{\mathcal{C}}(-, B)_{0}: \operatorname{Obj}\left(\mathcal{C}^{\text {op }}\right) \rightarrow \operatorname{Obj}(\text { Set }) \\
& \operatorname{hom}_{\mathcal{C}}(C, B)_{0}:=\operatorname{hom}_{\mathcal{C}}(C, B) \\
& \operatorname{hom}_{\mathcal{C}}(-, B)_{1}: \operatorname{Ar}\left(\mathcal{C}^{\text {op }}\right) \rightarrow \operatorname{Ar}(\text { Set }) \\
& \operatorname{hom}_{\mathcal{C}}(-, B)_{C, D}: \operatorname{hom}_{(\mathcal{C} \text { op })}(C, D) \rightarrow \operatorname{Set}\left(\operatorname{hom}_{\mathcal{C}}(D, B), \operatorname{hom}_{\mathcal{C}}(C, B)\right) \\
& \operatorname{hom}_{\mathcal{C}}(f: C \rightarrow D, B): \operatorname{hom}_{\mathcal{C}}(D, B) \rightarrow \operatorname{hom}_{\mathcal{C}}(C, B) \\
& \operatorname{hom}_{\mathcal{C}}(f: C \rightarrow D, B) g:=g \circ f
\end{aligned}
$$

Hom-Functors

Exercise 8
Let \mathcal{C} be a (locally small) category. Spell out the definition of the set-valued hom-functor $\operatorname{hom}_{\mathcal{C}}(-,-): \mathcal{C}^{\text {op }} \times \mathcal{C} \rightarrow$ Set. Verify carefully that it is a functor (textbook, Exercise 47).

Properties of Functors

Faithful and Full Functors

Definition

Let \mathcal{C} and \mathcal{D} be (locally small) categories and let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor.
(i) The functor F is faithful iff each map $F_{A, B}: \mathcal{C}(A, B) \rightarrow \mathcal{D}\left(F_{0} A, F_{0} B\right)$ is injective.
(ii) The functor F is full iff each map $F_{A, B}: \mathcal{C}(A, B) \rightarrow \mathcal{D}\left(F_{0} A, F_{0} B\right)$ is surjective.

Faithful and Full Functors

Example

The forgetful functor $F:$ Mon \rightarrow Set is faithful, but not full (explanation in the whiteboard).

Faithful and Full Functors

Example

The forgetful functor $F:$ Mon \rightarrow Set is faithful, but not full (explanation in the whiteboard). Let $\left(M, \cdot, 1_{M}\right)$ and $\left(N, *, 1_{N}\right)$ be two monoids and let $f: M \rightarrow N$ be a homomorphism between them.

- Since $F_{1} f=f$, the map F_{1} is injective.
- If $g: M \rightarrow N$ is any function in Set such that $g\left(1_{M}\right) \neq 1_{N}$, then g is not a homomorphism between $\left(M, \cdot, 1_{M}\right)$ and $\left(N, *, 1_{N}\right)$. Therefore the map F_{1} is not surjective.

Faithful and Full Functors

Exercise 9

Show that the free monoid functor MList : Set \rightarrow Mon is faithful, but not full.

Exercise 10 (1.3.5.2)

Let \mathcal{C} be a category with binary products such that, for each pair of objects A, B,

$$
\mathcal{C}(A, B) \neq \emptyset .
$$

(i) Show that the product functor $\times: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ is faithful.
(ii) Would $-\times$ - still be faithful in the absence of condition $\left(^{*}\right)$?

Preservation and Reflection

Definition

Let P be a property of arrows and let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor.
(i) The functor F preserves the property P iff
if f satisfies P then $F_{1} f$ satisfies P.
(ii) The functor F reflects the property P iff
if $F_{1} f$ satisfies P then f satisfies P.

Preservation and Reflection

Example

Show that all functors preserve isomorphisms.

Preservation and Reflection

Example

Show that all functors preserve isomorphisms.

Example

Show that full and faithful functors reflect isomorphisms.

References

References

Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3-94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).
Awodey, S. [2006] (2010). Category Theory. 2nd ed. Vol. 52. Oxford Logic Guides. Oxford University Press (cit. on pp. 63, 66, 67).
Fong, B., Milewski, B. and Spivak, D. I. (2020). Programming with Categories (DRAFT). URL: http://brendanfong.com/programmingcats.html (cit. on pp. 17-22, 43, 44, 49, 50).

[^0]: ${ }^{\dagger}$ The textbook does not use F_{0} and F_{1} but F.

