
Category Theory and Functional Programming
Functors

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2022-2

Preliminaries
Convention
The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems
on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos
2011].

2/99

Outline
Introduction

Definition of a Functor

Examples of Functors

Functors in Haskell

Binary Functors

Small, Large and Locally Small Categories

The Category of Small Categories

Contravariance

Hom-Functors

Properties of Functors

References

Introduction

Introduction
Question
What about of morphisms between categories?

Answer: Of course, them are functors.

Introduction 5/99

Introduction
Question
What about of morphisms between categories?

Answer: Of course, them are functors.

Introduction 6/99

Definition of a Functor

Definition of a Functor
Definition
A (covariant) functor F : C → D between categories C and D is a mapping of objects to
objects and arrows to arrows, that is,†

F0 : Obj(C)→ Obj(D) (object-map)
F1 : Ar(C)→ Ar(D) (arrow-map)

which for all objects A and arrows f and g, satisfies the functoriality conditions

F1 (g ◦ f) = (F1 g) ◦ (F1 f) (preservation of compositions)
F1 idA = id(F0 A) (preservation of identities)

†The textbook does not use F0 and F1 but F .
Definition of a Functor 8/99

Definition of a Functor
Remark
The functor F : C → D maps objects and arrows of C to objects and arrows of D, respectively.

A B
f

F0 A F0 B
F1 f

C

D

F

Definition of a Functor 9/99

Definition of a Functor
Remark
The functor F : C → D preserves domains and codomains, identity arrows, and composition. It
also maps each commutative diagram in C into a commutative diagram in D.

A C

B
f

g ◦ f

g

idA

F0 A F0 C

F0 B
F1 f

F1 (g ◦ f)

F1 g

F1 (idA)

C

D

F

Definition of a Functor 10/99

Definition of a Functor
Remark
Given a functor F : C → D, that is,

F0 : Obj(C)→ Obj(D),
F1 : Ar(C)→ Ar(D),

for all A, B in Obj(C), there is the map

FA,B : C(A, B)→ D(F0 A, F0 B),

and for all f : A→ B,
FA,B f : F0 A→ F0 B.

Definition of a Functor 11/99

Examples of Functors

Examples of Functors
Example
Let P S be the power set of the set S. The (covariant) power set functor

P : Set→ Set, is defined by

P0 : Obj(Set)→ Obj(Set)
P0 X := P X

P1 : Ar(Set)→ Ar(Set)
PX,Y : Set(X, Y)→ Set(P0 X, P0 Y)

PX,Y f : P X → P Y

PX,Y f S := f(S) = { f(x) | x ∈ S }

(continued on next slide)

Examples of Functors 13/99

Examples of Functors
Example
Let P S be the power set of the set S. The (covariant) power set functor

P : Set→ Set, is defined by

P0 : Obj(Set)→ Obj(Set)
P0 X := P X

P1 : Ar(Set)→ Ar(Set)
PX,Y : Set(X, Y)→ Set(P0 X, P0 Y)

PX,Y f : P X → P Y

PX,Y f S := f(S) = { f(x) | x ∈ S }

(continued on next slide)

Examples of Functors 14/99

Examples of Functors
Example
Let P S be the power set of the set S. The (covariant) power set functor

P : Set→ Set, is defined by

P0 : Obj(Set)→ Obj(Set)
P0 X := P X

P1 : Ar(Set)→ Ar(Set)
PX,Y : Set(X, Y)→ Set(P0 X, P0 Y)

PX,Y f : P X → P Y

PX,Y f S := f(S) = { f(x) | x ∈ S }

(continued on next slide)

Examples of Functors 15/99

Examples of Functors
Example (continuation)
Let X = {0, 1}, Y = {∅, X} and f : X → Y defined by f(0) = ∅ and f(1) = X. Then,

P0 : Obj(Set)→ Obj(Set)
P0 X := P X = {∅, {0}, {1}, X},

PX,Y f : P X → P Y

PX,Y f ∅ := f(∅) = ∅,
PX,Y f {0} := f({0}) = {∅},
PX,Y f {1} := f({1}) = {X},
PX,Y f {0, 1} := f({0, 1}) = {∅, X}.

Examples of Functors 16/99

Examples of Functors
Example
Let (P,⪯) and (Q,⪯) be two pre-orders seen as categories, denoted P and Q, respectively. A
functor F : P → Q is defined by

F0 : Obj(P)→ Obj(Q) F1 : Ar(P)→ Ar(Q)
FA,B : P(A, B)→ Q(F0 A, F0 B)
FA,B f : F0 A→ F0 B

Since P(A, B) and Q(F0 A, F0 B) have at most an arrow, the map FA,B exists iff

A ⪯ B implies F0 A ⪯ F0 B.

That is, a functor F : P → Q is just a monotone map which sends, if exists, the unique arrow
A→ B to the unique arrow F0 A→ F0 B.
Example from [Fong, Milewski and Spivak 2020, § 3.2.2].

Examples of Functors 17/99

Examples of Functors
Example
Let (P,⪯) and (Q,⪯) be two pre-orders seen as categories, denoted P and Q, respectively. A
functor F : P → Q is defined by

F0 : Obj(P)→ Obj(Q)

F1 : Ar(P)→ Ar(Q)
FA,B : P(A, B)→ Q(F0 A, F0 B)
FA,B f : F0 A→ F0 B

Since P(A, B) and Q(F0 A, F0 B) have at most an arrow, the map FA,B exists iff

A ⪯ B implies F0 A ⪯ F0 B.

That is, a functor F : P → Q is just a monotone map which sends, if exists, the unique arrow
A→ B to the unique arrow F0 A→ F0 B.
Example from [Fong, Milewski and Spivak 2020, § 3.2.2].

Examples of Functors 18/99

Examples of Functors
Example
Let (P,⪯) and (Q,⪯) be two pre-orders seen as categories, denoted P and Q, respectively. A
functor F : P → Q is defined by

F0 : Obj(P)→ Obj(Q) F1 : Ar(P)→ Ar(Q)
FA,B : P(A, B)→ Q(F0 A, F0 B)
FA,B f : F0 A→ F0 B

Since P(A, B) and Q(F0 A, F0 B) have at most an arrow, the map FA,B exists iff

A ⪯ B implies F0 A ⪯ F0 B.

That is, a functor F : P → Q is just a monotone map which sends, if exists, the unique arrow
A→ B to the unique arrow F0 A→ F0 B.
Example from [Fong, Milewski and Spivak 2020, § 3.2.2].

Examples of Functors 19/99

Examples of Functors
Example
Let (P,⪯) and (Q,⪯) be two pre-orders seen as categories, denoted P and Q, respectively. A
functor F : P → Q is defined by

F0 : Obj(P)→ Obj(Q) F1 : Ar(P)→ Ar(Q)
FA,B : P(A, B)→ Q(F0 A, F0 B)
FA,B f : F0 A→ F0 B

Since P(A, B) and Q(F0 A, F0 B) have at most an arrow, the map FA,B exists iff

A ⪯ B implies F0 A ⪯ F0 B.

That is, a functor F : P → Q is just a monotone map which sends, if exists, the unique arrow
A→ B to the unique arrow F0 A→ F0 B.
Example from [Fong, Milewski and Spivak 2020, § 3.2.2].

Examples of Functors 20/99

Examples of Functors
Example
Let (P,⪯) and (Q,⪯) be two pre-orders seen as categories, denoted P and Q, respectively. A
functor F : P → Q is defined by

F0 : Obj(P)→ Obj(Q) F1 : Ar(P)→ Ar(Q)
FA,B : P(A, B)→ Q(F0 A, F0 B)
FA,B f : F0 A→ F0 B

Since P(A, B) and Q(F0 A, F0 B) have at most an arrow, the map FA,B exists iff

A ⪯ B implies F0 A ⪯ F0 B.

That is, a functor F : P → Q is just a monotone map which sends, if exists, the unique arrow
A→ B to the unique arrow F0 A→ F0 B.

Example from [Fong, Milewski and Spivak 2020, § 3.2.2].

Examples of Functors 21/99

Examples of Functors
Example
Let (P,⪯) and (Q,⪯) be two pre-orders seen as categories, denoted P and Q, respectively. A
functor F : P → Q is defined by

F0 : Obj(P)→ Obj(Q) F1 : Ar(P)→ Ar(Q)
FA,B : P(A, B)→ Q(F0 A, F0 B)
FA,B f : F0 A→ F0 B

Since P(A, B) and Q(F0 A, F0 B) have at most an arrow, the map FA,B exists iff

A ⪯ B implies F0 A ⪯ F0 B.

That is, a functor F : P → Q is just a monotone map which sends, if exists, the unique arrow
A→ B to the unique arrow F0 A→ F0 B.
Example from [Fong, Milewski and Spivak 2020, § 3.2.2].

Examples of Functors 22/99

Examples of Functors
Example
Let (M, ·, ϵ) and (N, ⋄, µ) be two monoids seen as categories, denoted M and N , respectively.
Let ∗ be the only object in both categories. A functor F :M→N is defined by

F0 : Obj(M)→ Obj(N)
F0 : {∗} → {∗}
F0 ∗ = ∗

F1 : Ar(M)→ Ar(N)
F∗,∗ : P(∗, ∗)→ Q(F0 ∗, F0 ∗)
F∗,∗ f : ∗ → ∗

The functor F must satisfies:

F∗,∗ (m1 ·m2) = (F∗,∗ m1) ⋄ (F∗,∗ m2), for all m1, m2 in M,

F∗,∗ ϵ = µ.

That is, a functor F :M→N is just a monoid homomorphism.

Examples of Functors 23/99

Examples of Functors
Example
Let (M, ·, ϵ) and (N, ⋄, µ) be two monoids seen as categories, denoted M and N , respectively.
Let ∗ be the only object in both categories. A functor F :M→N is defined by

F0 : Obj(M)→ Obj(N)
F0 : {∗} → {∗}
F0 ∗ = ∗

F1 : Ar(M)→ Ar(N)
F∗,∗ : P(∗, ∗)→ Q(F0 ∗, F0 ∗)
F∗,∗ f : ∗ → ∗

The functor F must satisfies:

F∗,∗ (m1 ·m2) = (F∗,∗ m1) ⋄ (F∗,∗ m2), for all m1, m2 in M,

F∗,∗ ϵ = µ.

That is, a functor F :M→N is just a monoid homomorphism.

Examples of Functors 24/99

Examples of Functors
Example
Let (M, ·, ϵ) and (N, ⋄, µ) be two monoids seen as categories, denoted M and N , respectively.
Let ∗ be the only object in both categories. A functor F :M→N is defined by

F0 : Obj(M)→ Obj(N)
F0 : {∗} → {∗}
F0 ∗ = ∗

F1 : Ar(M)→ Ar(N)
F∗,∗ : P(∗, ∗)→ Q(F0 ∗, F0 ∗)
F∗,∗ f : ∗ → ∗

The functor F must satisfies:

F∗,∗ (m1 ·m2) = (F∗,∗ m1) ⋄ (F∗,∗ m2), for all m1, m2 in M,

F∗,∗ ϵ = µ.

That is, a functor F :M→N is just a monoid homomorphism.

Examples of Functors 25/99

Examples of Functors
Example
Let (M, ·, ϵ) and (N, ⋄, µ) be two monoids seen as categories, denoted M and N , respectively.
Let ∗ be the only object in both categories. A functor F :M→N is defined by

F0 : Obj(M)→ Obj(N)
F0 : {∗} → {∗}
F0 ∗ = ∗

F1 : Ar(M)→ Ar(N)
F∗,∗ : P(∗, ∗)→ Q(F0 ∗, F0 ∗)
F∗,∗ f : ∗ → ∗

The functor F must satisfies:

F∗,∗ (m1 ·m2) = (F∗,∗ m1) ⋄ (F∗,∗ m2), for all m1, m2 in M,

F∗,∗ ϵ = µ.

That is, a functor F :M→N is just a monoid homomorphism.

Examples of Functors 26/99

Examples of Functors
Example
Let (M, ·, ϵ) and (N, ⋄, µ) be two monoids seen as categories, denoted M and N , respectively.
Let ∗ be the only object in both categories. A functor F :M→N is defined by

F0 : Obj(M)→ Obj(N)
F0 : {∗} → {∗}
F0 ∗ = ∗

F1 : Ar(M)→ Ar(N)
F∗,∗ : P(∗, ∗)→ Q(F0 ∗, F0 ∗)
F∗,∗ f : ∗ → ∗

The functor F must satisfies:

F∗,∗ (m1 ·m2) = (F∗,∗ m1) ⋄ (F∗,∗ m2), for all m1, m2 in M,

F∗,∗ ϵ = µ.

That is, a functor F :M→N is just a monoid homomorphism.

Examples of Functors 27/99

Examples of Functors
Example
The identity functor IdC : C → C in a category C is the functor that maps each object and
each arrow of C to itself.

Examples of Functors 28/99

Examples of Functors
Example
Let F : Mon→ Set be the forgetful functor which
(i) sends a monoid to its set of elements and
(ii) sends a homomorphism between monoids to the corresponding function between sets.

Examples of Functors 29/99

Examples of Functors
Example
Let [S] be the set of all finite lists of elements of S. The list functor

List : Set→ Set, is defined by

List0 : Obj(Set)→ Obj(Set)
List0 X := [X]

List1 : Ar(Set)→ Ar(Set)
ListX,Y : Set(X, Y)→ Set(List0 X, List0 Y)

ListX,Y f : [X]→ [Y]
ListX,Y f [x1, x2, . . . , xn] := [f(x1), f(x2), . . . , f(xn)]

Examples of Functors 30/99

Examples of Functors
Example
Let [S] be the set of all finite lists of elements of S. The list functor

List : Set→ Set, is defined by

List0 : Obj(Set)→ Obj(Set)
List0 X := [X]

List1 : Ar(Set)→ Ar(Set)
ListX,Y : Set(X, Y)→ Set(List0 X, List0 Y)

ListX,Y f : [X]→ [Y]
ListX,Y f [x1, x2, . . . , xn] := [f(x1), f(x2), . . . , f(xn)]

Examples of Functors 31/99

Examples of Functors
Example
Let [S] be the set of all finite lists of elements of S. The list functor

List : Set→ Set, is defined by

List0 : Obj(Set)→ Obj(Set)
List0 X := [X]

List1 : Ar(Set)→ Ar(Set)
ListX,Y : Set(X, Y)→ Set(List0 X, List0 Y)

ListX,Y f : [X]→ [Y]
ListX,Y f [x1, x2, . . . , xn] := [f(x1), f(x2), . . . , f(xn)]

Examples of Functors 32/99

Examples of Functors
Example
The free monoid functor MList : Set→Mon maps every set X to the free monoid over X.

Let (−) ∗ (−) be the list concatenation function and let ε be the empty list, the functor is
defined by

MList0 : Obj(Set)→ Obj(Mon)
MList0 X := (List0 X, ∗, ε)

= ([X], ∗, ε)

MList1 : Ar(Set)→ Ar(Mon)
MListX,Y : Set(X, Y)→Mon(MList0 X, MList0 Y)

MListX,Y f : ([X], ∗, ε)→ ([Y], ∗, ε)
MListX,Y f [x1, x2, . . . , xn] := ListX,Y f [x1, x2, . . . , xn]

Examples of Functors 33/99

Examples of Functors
Example
The free monoid functor MList : Set→Mon maps every set X to the free monoid over X.

Let (−) ∗ (−) be the list concatenation function and let ε be the empty list, the functor is
defined by

MList0 : Obj(Set)→ Obj(Mon)
MList0 X := (List0 X, ∗, ε)

= ([X], ∗, ε)

MList1 : Ar(Set)→ Ar(Mon)
MListX,Y : Set(X, Y)→Mon(MList0 X, MList0 Y)

MListX,Y f : ([X], ∗, ε)→ ([Y], ∗, ε)
MListX,Y f [x1, x2, . . . , xn] := ListX,Y f [x1, x2, . . . , xn]

Examples of Functors 34/99

Examples of Functors
Example
The free monoid functor MList : Set→Mon maps every set X to the free monoid over X.

Let (−) ∗ (−) be the list concatenation function and let ε be the empty list, the functor is
defined by

MList0 : Obj(Set)→ Obj(Mon)
MList0 X := (List0 X, ∗, ε)

= ([X], ∗, ε)

MList1 : Ar(Set)→ Ar(Mon)
MListX,Y : Set(X, Y)→Mon(MList0 X, MList0 Y)

MListX,Y f : ([X], ∗, ε)→ ([Y], ∗, ε)
MListX,Y f [x1, x2, . . . , xn] := ListX,Y f [x1, x2, . . . , xn]

Examples of Functors 35/99

Examples of Functors
Example
The free monoid functor MList : Set→Mon maps every set X to the free monoid over X.

Let (−) ∗ (−) be the list concatenation function and let ε be the empty list, the functor is
defined by

MList0 : Obj(Set)→ Obj(Mon)
MList0 X := (List0 X, ∗, ε)

= ([X], ∗, ε)

MList1 : Ar(Set)→ Ar(Mon)
MListX,Y : Set(X, Y)→Mon(MList0 X, MList0 Y)

MListX,Y f : ([X], ∗, ε)→ ([Y], ∗, ε)
MListX,Y f [x1, x2, . . . , xn] := ListX,Y f [x1, x2, . . . , xn]

Examples of Functors 36/99

Exercises
Exercise 1
Verify that functors F : 2⇒ → Set correspond to directed graphs (textbook, Exercise 45).

Examples of Functors 37/99

Functors in Haskell

Functors in Haskell
Introduction via Maybe
(Whiteboard).

The typeclass Functor

class Functor f where
fmap :: (a -> b) -> f a -> f b

Functors in Haskell 39/99

Functors in Haskell
Introduction via Maybe
(Whiteboard).

The typeclass Functor

class Functor f where
fmap :: (a -> b) -> f a -> f b

Functors in Haskell 40/99

Functors in Haskell
Example
The polymorphic type constructor Maybe is a functor whose instance is defined by

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

Exercise 2
Show that the Maybe functor satisfies the functoriality conditions.

Functors in Haskell 41/99

Functors in Haskell
Example
The polymorphic type constructor Maybe is a functor whose instance is defined by

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

Exercise 2
Show that the Maybe functor satisfies the functoriality conditions.

Functors in Haskell 42/99

Functors in Haskell
Example
ReadInt is a type constructor that turns any type a into a new type that reads a value of Int
to create a value of a [Fong, Milewski and Spivak 2020, Example 3.41].

data ReadInt a = MkReadInt (Int -> a)

ReadInt is a functor via the following instance.

instance Functor ReadInt where
fmap f (MkReadInt g) = MkReadInt (f . g)

Functors in Haskell 43/99

Functors in Haskell
Example
ReadInt is a type constructor that turns any type a into a new type that reads a value of Int
to create a value of a [Fong, Milewski and Spivak 2020, Example 3.41].

data ReadInt a = MkReadInt (Int -> a)

ReadInt is a functor via the following instance.

instance Functor ReadInt where
fmap f (MkReadInt g) = MkReadInt (f . g)

Functors in Haskell 44/99

Functors in Haskell
Example
The (binary) function type (->) :: a -> b -> (a -> b) is a functor.

instance Functor ((->) a) where
fmap f g = f . g

Note that fmap :: (b -> c) -> (a -> b) -> (a -> c).

Functors in Haskell 45/99

Functors in Haskell
Exercise 3
To define an instance of Functor for the (binary) product type (,) :: a -> b -> (a,b).

Functors in Haskell 46/99

Functors in Haskell
Example
Recall that terminal object (unit type) in Haskell is ()::(). We can define a constant functor by

data CUnit a = MkCU ()

instance Functor CUnit where
fmap f (MkCU ()) = MkCU ()

Functors in Haskell 47/99

Functors in Haskell
Exercise 4
Given a constant ‘functor’ defined by

data CBool a = MkCB Bool

instance Functor CBool where
fmap f (MkCB True) = MkCB False
fmap f (MkCB False) = MkCB True

Is CBool really a functor?

Functors in Haskell 48/99

Functors in Haskell
Exercise 5
We define a constant functor by

data CInt a = MkCI Int

Show that the polymorphic type constructor CInt can be given the structure of a functor
by saying how it lifts morphisms. That is, provide a Haskell function mapCInt of the type
(a -> b) -> (CInt a -> CInt b) [Fong, Milewski and Spivak 2020, Exercise 3.46].

Functors in Haskell 49/99

Functors in Haskell
Exercise 6
For each of the following type constructors, define two versions of fmap, one of which has a
corresponding functor Hask→ Hask, and one of which does not [Fong, Milewski and Spivak
2020, Exercise 3.48].
(i) data WithString a = WithStr (a, String)

(ii) data ConstStr a = ConstStr String

(iii) data List a = Nil | Cons (a, List a)

Functors in Haskell 50/99

Binary Functors

The Product Category
Definition
Let C and D be two categories. The product category C × D is defined by:
(i) Objects: (C, D), where C and D are objects in C and D, respectively.

(ii) Arrows: (C, D)
(f, g)
−−−−→ (C ′, D′), where C

f−→ C ′ and D
g−→ D′ are arrows in C and D,

respectively.

(iii) Composition
(f ′, g′) ◦ (f, g) := (f ′ ◦ f, g′ ◦ g).

(iv) Identities
id(C,D) := (idC , idD).

Binary Functors 52/99

Definition of a Binary Functor
Definition
Let C, D and E be three categories. A binary functor (or bifunctor) is a functor whose domain
is a product category, that is, a binary functor from C × D to E is a functor

F : C × D → E .

Binary Functors 53/99

Example of Binary Functors
Example
The projection functors C π1←− C ×D π2−→ D are binary functors.

(i) For π1 : C × D → C we have:

(π1)0 : Obj(C × D)→ Obj(C)
(π1)0 (C, D) := C

(π1)1 : Ar(C × D)→ Ar(C)
(π1)(C,D),(C′,D′) : MorC×D((C, D), (C ′, D′))→ MorC((π1)0 (C, D), (π1)0 (C ′, D′)),

(π1)(C,D),(C′,D′) (f, g) : C → C ′

(π1)(C,D),(C′,D′) (f, g) := f

(ii) Similarly for π2 : C × D → D.

Binary Functors 54/99

Example of Binary Functors
Example
The projection functors C π1←− C ×D π2−→ D are binary functors.
(i) For π1 : C × D → C we have:

(π1)0 : Obj(C × D)→ Obj(C)
(π1)0 (C, D) := C

(π1)1 : Ar(C × D)→ Ar(C)
(π1)(C,D),(C′,D′) : MorC×D((C, D), (C ′, D′))→ MorC((π1)0 (C, D), (π1)0 (C ′, D′)),

(π1)(C,D),(C′,D′) (f, g) : C → C ′

(π1)(C,D),(C′,D′) (f, g) := f

(ii) Similarly for π2 : C × D → D.

Binary Functors 55/99

Example of Binary Functors
Example
The projection functors C π1←− C ×D π2−→ D are binary functors.
(i) For π1 : C × D → C we have:

(π1)0 : Obj(C × D)→ Obj(C)
(π1)0 (C, D) := C

(π1)1 : Ar(C × D)→ Ar(C)
(π1)(C,D),(C′,D′) : MorC×D((C, D), (C ′, D′))→ MorC((π1)0 (C, D), (π1)0 (C ′, D′)),

(π1)(C,D),(C′,D′) (f, g) : C → C ′

(π1)(C,D),(C′,D′) (f, g) := f

(ii) Similarly for π2 : C × D → D.

Binary Functors 56/99

The Product Functor

Definition
Let C be a category with binaries products, and let C × C be the product category of C with
itself. The product functor × : C × C → C is a binary functor defined by

×0 : Obj(C × C)→ Obj(C)
×0 (A, B) := A×B (binary product)

×1 : Ar(C × C)→ Ar(C)
×(A,A′),(B,B′) : MorC×C((A, A′), (B, B′))→ MorC(×0 (A, A′),×0 (B, B′))

×(A,A′),(B,B′) (f, g) : A×A′ → B ×B′

×(A,A′),(B,B′) (f, g) := f × g (product morphish)

where f × g := ⟨f ◦ π1, g ◦ π2⟩.
(continued on next slide)

Binary Functors 57/99

The Product Functor

Definition
Let C be a category with binaries products, and let C × C be the product category of C with
itself. The product functor × : C × C → C is a binary functor defined by

×0 : Obj(C × C)→ Obj(C)
×0 (A, B) := A×B (binary product)

×1 : Ar(C × C)→ Ar(C)
×(A,A′),(B,B′) : MorC×C((A, A′), (B, B′))→ MorC(×0 (A, A′),×0 (B, B′))

×(A,A′),(B,B′) (f, g) : A×A′ → B ×B′

×(A,A′),(B,B′) (f, g) := f × g (product morphish)

where f × g := ⟨f ◦ π1, g ◦ π2⟩.
(continued on next slide)

Binary Functors 58/99

The Product Functor
Definition (continuation)
That is, both squares in the following diagram commute.

A×A′A A′

B ×B′B B′

π1 π2

f g

π1 π2

f × g
(

f ◦ π1 = π1 ◦ (f × g)
g ◦ π2 = π2 ◦ (f × g)

)

Binary Functors 59/99

N -Ary Functors
Remark
Binary functors can be generalised to n-ary functors.

Binary Functors 60/99

Small, Large and Locally Small Categories

Small and Large Categories
Introduction
Before defining a category of categories, we need to classify the categories in small and large
for avoiding that it be an object of itself.

Small, Large and Locally Small Categories 62/99

Small and Large Categories
Definition
A category is small iff both the collection of its objects and the collection of its arrows are sets.
Otherwise, the category is large [Awodey 2010].

Small, Large and Locally Small Categories 63/99

Small and Large Categories
Example
The finite categories 1, 2, . . . , n, a monoid viewed as a category, and a pre-order viewed as a
category are small categories.

Example
The categories Set, Pos, Mon, Grp and Top are large categories.

Small, Large and Locally Small Categories 64/99

Small and Large Categories
Example
The finite categories 1, 2, . . . , n, a monoid viewed as a category, and a pre-order viewed as a
category are small categories.

Example
The categories Set, Pos, Mon, Grp and Top are large categories.

Small, Large and Locally Small Categories 65/99

Locally Small Categories
Definition
A category C is locally small iff for all objects A, B the collection C(A, B) is a set [Awodey
2010].

Remark
▶ Recall from the previous conventions that if the collection C(A, B) is a set it is called a

hom-set and it is denoted homC(A, B).
▶ Also recall that in the textbook all the collections C(A, B) are hom-sets.

Small, Large and Locally Small Categories 66/99

Locally Small Categories
Definition
A category C is locally small iff for all objects A, B the collection C(A, B) is a set [Awodey
2010].

Remark
▶ Recall from the previous conventions that if the collection C(A, B) is a set it is called a

hom-set and it is denoted homC(A, B).
▶ Also recall that in the textbook all the collections C(A, B) are hom-sets.

Small, Large and Locally Small Categories 67/99

Locally Small Categories
Example
Any small category is locally small.

Example
The categories Set, Pos, Mon, Grp and Top are locally small categories.

Small, Large and Locally Small Categories 68/99

Locally Small Categories
Example
Any small category is locally small.

Example
The categories Set, Pos, Mon, Grp and Top are locally small categories.

Small, Large and Locally Small Categories 69/99

The Category of Small Categories

The Category of Small Categories
Definition
The category Cat is the category of small categories:
(i) Objects: Small categories
(ii) Arrows: Functors

(continued on next slide)

The Category of Small Categories 71/99

The Category of Small Categories

Definition (continuation)

(iii) Composition of functors
Let F : C → D and G : D → E two functors, then

G ◦ F : C → E

(G ◦ F)0 : Obj(C)→ Obj(E)
(G ◦ F)0 A := G0 (F0 A),

(G ◦ F)1 : Ar(C)→ Ar(E)
(G ◦ F)A,B : C(A, B)→ E((G ◦ F)0 A, (G ◦ F)0 B)

(G ◦ F)A,B f : G0 (F0 A)→ G0 (F0 B)
(G ◦ F)A,B f := G1 (F1 f).

(continued on next slide)The Category of Small Categories 72/99

The Category of Small Categories
Definition (continuation)

(iii) Composition of functors
Let F : C → D and G : D → E , then

G ◦ F : C → E :=
{

A 7→ G (F A),
f 7→ G (F f).

(iv) Identity functors

idC : C → C :=
{

A 7→ A,

f 7→ f.

The Category of Small Categories 73/99

The Category of Small Categories
Definition (continuation)

(iii) Composition of functors
Let F : C → D and G : D → E , then

G ◦ F : C → E :=
{

A 7→ G (F A),
f 7→ G (F f).

(iv) Identity functors

idC : C → C :=
{

A 7→ A,

f 7→ f.

The Category of Small Categories 74/99

The Category of Small Categories
Remark
The category Cat is large and therefore it is not object of itself.

The Category of Small Categories 75/99

Contravariance

Introduction
Description
A covariant functor F preserves the direction of arrows, that is,

F1 (f : A→ B) : F0 A→ F0 B.

A contravariant functor G reverses the direction of arrows, that is,

G1 (f : A→ B) : G0 B → G0 A.

Contravariance 77/99

Contravariant Functors
Definition
Let C and D be two categories. A contravariant functor G from C to D is a functor

G : Cop → D (or C → Dop)
G0 : Obj(Cop)→ Obj(D) (object-map)
G1 : Ar(Cop)→ Ar(D) (arrow-map)

GA,B : Cop(A, B)→ D(G0 B, G0 A)
GA,B f : G0 B → G0 A

G1(g ◦ f) = (G1 f) ◦ (G1 g) (preservation of composition)
G1 (idA) = id(G0 A) (preservation of identities)

Contravariance 78/99

Contravariant Functors
Example
Let P S be the power set of the set S. The contravariant power set functor

P op : Setop → Set, is defined by

P op
0 : Obj(Setop)→ Obj(Set)

P op
0 X := P X

P op
1 : Ar(Setop)→ Ar(Set)

P op
X,Y : Setop(X, Y)→ Set(P op

0 Y , P op
0 X)

P op
X,Y f : P Y → P X

P op
X,Y f T := f−1(T) = {x ∈ X | f(x) ∈ T }

Contravariance 79/99

Contravariant Functors
Example
Let P S be the power set of the set S. The contravariant power set functor

P op : Setop → Set, is defined by

P op
0 : Obj(Setop)→ Obj(Set)

P op
0 X := P X

P op
1 : Ar(Setop)→ Ar(Set)

P op
X,Y : Setop(X, Y)→ Set(P op

0 Y , P op
0 X)

P op
X,Y f : P Y → P X

P op
X,Y f T := f−1(T) = {x ∈ X | f(x) ∈ T }

Contravariance 80/99

Contravariant Functors
Example
Let P S be the power set of the set S. The contravariant power set functor

P op : Setop → Set, is defined by

P op
0 : Obj(Setop)→ Obj(Set)

P op
0 X := P X

P op
1 : Ar(Setop)→ Ar(Set)

P op
X,Y : Setop(X, Y)→ Set(P op

0 Y , P op
0 X)

P op
X,Y f : P Y → P X

P op
X,Y f T := f−1(T) = {x ∈ X | f(x) ∈ T }

Contravariance 81/99

Hom-Functors

Hom-Functors
Definition (first notation)
Let C be a locally small category and let A be an object of C. The covariant Set-valued
hom-functor C(A,−) is defined by

C(A,−) : C → Set,

C(A,−)0 : Obj(C)→ Obj(Set)
C(A, C)0 := C(A, C),

C(A,−)1 : Ar(C)→ Ar(Set)
C(A,−)C,D : C(C, D)→ Set(C(A,−)0 C, C(A,−)0 D)

C(A, f)C,D : C(A, C)→ C(A, D)
C(A, f)C,D g := f ◦ g.

Hom-Functors 83/99

Hom-Functors
Definition (first notation)
Let C be a (locally small) category and let B be an object of C. The contravariant Set-valued
hom-functor C(−, B) is defined by

C(−, B) : Cop → Set,

C(−, B)0 : Obj(Cop)→ Obj(Set)
C(C, B)0 := C(C, B),

C(−, B)1 : Ar(Cop)→ Ar(Set)
C(−, B)C,D : Cop(C, D)→ Set(C(−, B)0 D, C(−, B)0 C)

C(f, B)C,D : C(D, B)→ C(C, B)
C(f, B)C,D g := g ◦ f.

Hom-Functors 84/99

Hom-Functors
Exercise 7
Let C be a (locally small) category. Spell out the definition of the set-valued hom-functor
C(−,−) : Cop × C → Set. Verify carefully that it is a functor (textbook, Exercise 47).

Hom-Functors 85/99

Hom-Functors
Notation
Recall that if C is a locally small category the collection of arrows of an object A to an object B
is a set and it is denoted by homC(A, B), that is,

homC(A, B) :=
{

f ∈ Ar(C)
∣∣∣∣ A

f−→ B

}
=: C(A, B).

Hom-Functors 86/99

Hom-Functors
Definition (second notation)
Let C be a locally small category and let A be an object of C. The covariant Set-valued
hom-functor homC(A,−) is defined by

homC(A,−) : C → Set,

homC(A,−)0 : Obj(C)→ Obj(Set)
homC(A, C)0 := homC(A, C)

homC(A,−)1 : Ar(C)→ Ar(Set)
homC(A,−)C,D : homC(C, D)→ Set(homC(A, C), homC(A, D))

homC(A, f : C → D) : homC(A, C)→ homC(A, D)
homC(A, f : C → D) g := f ◦ g

Hom-Functors 87/99

Hom-Functors
Definition (second notation)
Let C be a (locally small) category and let B be an object of C. The contravariant Set-valued
hom-functor homC(−, B) is defined by

homC(−, B) : Cop → Set,

homC(−, B)0 : Obj(Cop)→ Obj(Set)
homC(C, B)0 := homC(C, B)

homC(−, B)1 : Ar(Cop)→ Ar(Set)
homC(−, B)C,D : hom(Cop)(C, D)→ Set(homC(D, B), homC(C, B))

homC(f : C → D, B) : homC(D, B)→ homC(C, B)
homC(f : C → D, B) g := g ◦ f

Hom-Functors 88/99

Hom-Functors
Exercise 8
Let C be a (locally small) category. Spell out the definition of the set-valued hom-functor
homC(−,−) : Cop × C → Set. Verify carefully that it is a functor (textbook, Exercise 47).

Hom-Functors 89/99

Properties of Functors

Faithful and Full Functors
Definition
Let C and D be (locally small) categories and let F : C → D be a functor.
(i) The functor F is faithful iff each map FA,B : C(A, B)→ D(F0 A, F0 B) is injective.
(ii) The functor F is full iff each map FA,B : C(A, B)→ D(F0 A, F0 B) is surjective.

Properties of Functors 91/99

Faithful and Full Functors
Example
The forgetful functor F : Mon→ Set is faithful, but not full (explanation in the whiteboard).

Let (M, ·, 1M) and (N, ∗, 1N) be two monoids and let f : M → N be a homomorphism between
them.
▶ Since F1 f = f , the map F1 is injective.
▶ If g : M → N is any function in Set such that g (1M) ̸= 1N , then g is not a homomorphism

between (M, ·, 1M) and (N, ∗, 1N). Therefore the map F1 is not surjective.

Properties of Functors 92/99

Faithful and Full Functors
Example
The forgetful functor F : Mon→ Set is faithful, but not full (explanation in the whiteboard).

Let (M, ·, 1M) and (N, ∗, 1N) be two monoids and let f : M → N be a homomorphism between
them.
▶ Since F1 f = f , the map F1 is injective.
▶ If g : M → N is any function in Set such that g (1M) ̸= 1N , then g is not a homomorphism

between (M, ·, 1M) and (N, ∗, 1N). Therefore the map F1 is not surjective.

Properties of Functors 93/99

Faithful and Full Functors
Exercise 9
Show that the free monoid functor MList : Set→Mon is faithful, but not full.

Exercise 10 (1.3.5.2)
Let C be a category with binary products such that, for each pair of objects A, B,

C(A, B) ̸= ∅. (*)

(i) Show that the product functor × : C × C → C is faithful.
(ii) Would −×− still be faithful in the absence of condition (*)?

Properties of Functors 94/99

Preservation and Reflection
Definition
Let P be a property of arrows and let F : C → D be a functor.
(i) The functor F preserves the property P iff

if f satisfies P then F1 f satisfies P .

(ii) The functor F reflects the property P iff
if F1 f satisfies P then f satisfies P .

Properties of Functors 95/99

Preservation and Reflection
Example
Show that all functors preserve isomorphisms.

Example
Show that full and faithful functors reflect isomorphisms.

Properties of Functors 96/99

Preservation and Reflection
Example
Show that all functors preserve isomorphisms.

Example
Show that full and faithful functors reflect isomorphisms.

Properties of Functors 97/99

References

References
Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New
Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3–94.
doi: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).
Awodey, S. [2006] (2010). Category Theory. 2nd ed. Vol. 52. Oxford Logic Guides. Oxford University
Press (cit. on pp. 63, 66, 67).
Fong, B., Milewski, B. and Spivak, D. I. (2020). Programming with Categories (DRAFT). url:
http://brendanfong.com/programmingcats.html (cit. on pp. 17–22, 43, 44, 49, 50).

References 99/99

https://doi.org/10.1007/978-3-642-12821-9_1
http://brendanfong.com/programmingcats.html

	Introduction
	Definition of a Functor
	Examples of Functors
	Functors in Haskell
	Binary Functors
	Small, Large and Locally Small Categories
	The Category of Small Categories
	Contravariance
	Hom-Functors
	Properties of Functors
	References

