Category Theory and Functional Programming Functors

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

Introduction

- Definition of a Functor
- Examples of Functors
- Functors in Haskell
- **Binary Functors**
- Small, Large and Locally Small Categories
- The Category of Small Categories
- Contravariance
- Hom-Functors
- Properties of Functors
- References

Introduction

Introduction

Question

What about of morphisms between categories?

Introduction

Question

What about of morphisms between categories?

Answer: Of course, them are functors.

Definition

A (covariant) functor $F : C \to D$ between categories C and D is a mapping of objects to objects and arrows to arrows, that is,[†]

$$F_0: \operatorname{Obj}(\mathcal{C}) \to \operatorname{Obj}(\mathcal{D}) \qquad (\text{object-map})$$

$$F_1: \operatorname{Ar}(\mathcal{C}) \to \operatorname{Ar}(\mathcal{D}) \qquad (\text{arrow-map})$$

which for all objects A and arrows f and g, satisfies the **functoriality** conditions

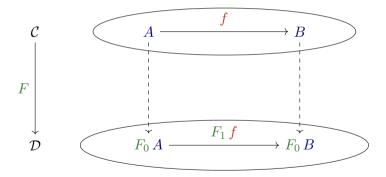
 $F_1 (g \circ f) = (F_1 g) \circ (F_1 f)$ $F_1 \operatorname{id}_A = \operatorname{id}_{(F_0 A)}$

(preservation of compositions) (preservation of identities)

[†]The textbook does not use F_0 and F_1 but F.

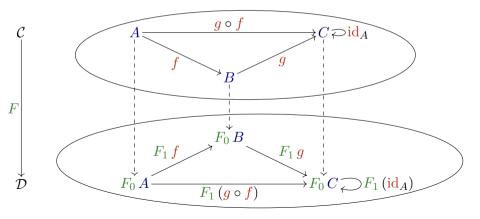
Remark

The functor $F : \mathcal{C} \to \mathcal{D}$ maps objects and arrows of \mathcal{C} to objects and arrows of \mathcal{D} , respectively.



Remark

The functor $F : \mathcal{C} \to \mathcal{D}$ preserves domains and codomains, identity arrows, and composition. It also maps each commutative diagram in \mathcal{C} into a commutative diagram in \mathcal{D} .



Remark

Given a functor $F : \mathcal{C} \to \mathcal{D}$, that is,

 $F_0: \operatorname{Obj}(\mathcal{C}) \to \operatorname{Obj}(\mathcal{D}),$ $F_1: \operatorname{Ar}(\mathcal{C}) \to \operatorname{Ar}(\mathcal{D}),$

for all A, B in $Obj(\mathcal{C})$, there is the map

$$F_{A,B}: \mathcal{C}(A,B) \to \mathcal{D}(F_0 A, F_0 B),$$

and for all $f : A \rightarrow B$,

 $F_{A,B} f: F_0 A \to F_0 B.$

Example

Let $\mathcal{P}S$ be the power set of the set S. The (covariant) power set functor

 $P: \mathbf{Set} \to \mathbf{Set},$ is defined by

Example

Let $\mathcal{P}S$ be the power set of the set S. The (covariant) power set functor

 $P: \mathbf{Set} \to \mathbf{Set}, \quad \text{is defined by}$

 $P_0 : \operatorname{Obj}(\mathbf{Set}) \to \operatorname{Obj}(\mathbf{Set})$ $P_0 X := \mathcal{P} X$

Let $\mathcal{P}S$ be the power set of the set S. The (covariant) power set functor

 $P: \mathbf{Set} \to \mathbf{Set}, \qquad \text{is defined by}$

 $P_0 : \operatorname{Obj}(\mathbf{Set}) \to \operatorname{Obj}(\mathbf{Set})$ $P_0 X := \mathcal{P} X$

 $P_{1} : \operatorname{Ar}(\operatorname{Set}) \to \operatorname{Ar}(\operatorname{Set})$ $P_{X,Y} : \operatorname{Set}(X,Y) \to \operatorname{Set}(P_{0} X, P_{0} Y)$ $P_{X,Y} f : \mathcal{P} X \to \mathcal{P} Y$ $P_{X,Y} f S := f(S) = \{f(x) \mid x \in S\}$

(continued on next slide)

Example (continuation)

Let $X = \{0,1\}$, $Y = \{\emptyset, X\}$ and $f: X \to Y$ defined by $f(0) = \emptyset$ and f(1) = X. Then,

$$P_0 : \operatorname{Obj}(\mathbf{Set}) \to \operatorname{Obj}(\mathbf{Set})$$
$$P_0 X := \mathcal{P} X = \{\emptyset, \{0\}, \{1\}, X\},\$$

$$\begin{split} P_{X,Y} & f: \mathcal{P} X \to \mathcal{P} Y \\ P_{X,Y} & f \emptyset & := f(\emptyset) = \emptyset, \\ P_{X,Y} & f \{0\} & := f(\{0\}) = \{\emptyset\}, \\ P_{X,Y} & f \{0\} & := f(\{1\}) = \{X\}, \\ P_{X,Y} & f \{0,1\} & := f(\{0,1\}) = \{\emptyset,X\}. \end{split}$$

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q} , respectively. A functor $F: \mathcal{P} \to \mathcal{Q}$ is defined by

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q} , respectively. A functor $F: \mathcal{P} \to \mathcal{Q}$ is defined by

 $F_0: \operatorname{Obj}(\mathcal{P}) \to \operatorname{Obj}(\mathcal{Q})$

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q} , respectively. A functor $F: \mathcal{P} \to \mathcal{Q}$ is defined by

 $F_0: \operatorname{Obj}(\mathcal{P}) \to \operatorname{Obj}(\mathcal{Q})$

 $F_{1} : \operatorname{Ar}(\mathcal{P}) \to \operatorname{Ar}(\mathcal{Q})$ $F_{A,B} : \mathcal{P}(A, B) \to \mathcal{Q}(F_{0} A, F_{0} B)$ $F_{A,B} f : F_{0} A \to F_{0} B$

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q} , respectively. A functor $F: \mathcal{P} \to \mathcal{Q}$ is defined by

$$\begin{split} F_{0}: \mathrm{Obj}(\mathcal{P}) \to \mathrm{Obj}(\mathcal{Q}) & F_{1}: \mathrm{Ar}(\mathcal{P}) \to \mathrm{Ar}(\mathcal{Q}) \\ F_{A,B}: \mathcal{P}(A,B) \to \mathcal{Q}(F_{0}|A,F_{0}|B) \\ F_{A,B}|f: F_{0}|A \to F_{0}|B \end{split}$$

Since $\mathcal{P}(A, B)$ and $\mathcal{Q}(F_0 A, F_0 B)$ have at most an arrow, the map $F_{A,B}$ exists iff

 $A \preceq B$ implies $F_0 A \preceq F_0 B$.

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q} , respectively. A functor $F: \mathcal{P} \to \mathcal{Q}$ is defined by

$$\begin{split} F_{0}: \mathrm{Obj}(\mathcal{P}) \to \mathrm{Obj}(\mathcal{Q}) & F_{1}: \mathrm{Ar}(\mathcal{P}) \to \mathrm{Ar}(\mathcal{Q}) \\ F_{A,B}: \mathcal{P}(A,B) \to \mathcal{Q}(F_{0}|A,F_{0}|B) \\ F_{A,B}|f: F_{0}|A \to F_{0}|B \end{split}$$

Since $\mathcal{P}(A, B)$ and $\mathcal{Q}(F_0 A, F_0 B)$ have at most an arrow, the map $F_{A,B}$ exists iff

 $A \preceq B$ implies $F_0 A \preceq F_0 B$.

That is, a functor $F : \mathcal{P} \to \mathcal{Q}$ is just a monotone map which sends, if exists, the unique arrow $A \to B$ to the unique arrow $F_0 A \to F_0 B$.

Examples of Functors

Example

Let (P, \preceq) and (Q, \preceq) be two pre-orders seen as categories, denoted \mathcal{P} and \mathcal{Q} , respectively. A functor $F: \mathcal{P} \to \mathcal{Q}$ is defined by

$$\begin{split} F_{0}: \mathrm{Obj}(\mathcal{P}) \to \mathrm{Obj}(\mathcal{Q}) & F_{1}: \mathrm{Ar}(\mathcal{P}) \to \mathrm{Ar}(\mathcal{Q}) \\ & F_{A,B}: \mathcal{P}(A,B) \to \mathcal{Q}(F_{0}|A,F_{0}|B) \\ & F_{A,B}|f: F_{0}|A \to F_{0}|B \end{split}$$

Since $\mathcal{P}(A, B)$ and $\mathcal{Q}(F_0 A, F_0 B)$ have at most an arrow, the map $F_{A,B}$ exists iff

 $A \preceq B$ implies $F_0 A \preceq F_0 B$.

That is, a functor $F : \mathcal{P} \to \mathcal{Q}$ is just a monotone map which sends, if exists, the unique arrow $A \to B$ to the unique arrow $F_0 A \to F_0 B$.

Example from [Fong, Milewski and Spivak 2020, § 3.2.2].

Examples of Functors

Example

Let (M, \cdot, ϵ) and (N, \diamond, μ) be two monoids seen as categories, denoted \mathcal{M} and \mathcal{N} , respectively. Let * be the only object in both categories. A functor $F : \mathcal{M} \to \mathcal{N}$ is defined by

Example

Let (M, \cdot, ϵ) and (N, \diamond, μ) be two monoids seen as categories, denoted \mathcal{M} and \mathcal{N} , respectively. Let * be the only object in both categories. A functor $F : \mathcal{M} \to \mathcal{N}$ is defined by

$$F_0 : \operatorname{Obj}(\mathcal{M}) \to \operatorname{Obj}(\mathcal{N})$$
$$F_0 : \{*\} \to \{*\}$$
$$F_0 * = *$$

Example

Let (M, \cdot, ϵ) and (N, \diamond, μ) be two monoids seen as categories, denoted \mathcal{M} and \mathcal{N} , respectively. Let * be the only object in both categories. A functor $F : \mathcal{M} \to \mathcal{N}$ is defined by

$$F_0 : \operatorname{Obj}(\mathcal{M}) \to \operatorname{Obj}(\mathcal{N})$$
$$F_0 : \{*\} \to \{*\}$$
$$F_0 * = *$$

$$F_{1} : \operatorname{Ar}(\mathcal{M}) \to \operatorname{Ar}(\mathcal{N})$$
$$F_{*,*} : \mathcal{P}(*,*) \to \mathcal{Q}(F_{0}*,F_{0}*)$$
$$F_{*,*} f : * \to *$$

Example

Let (M, \cdot, ϵ) and (N, \diamond, μ) be two monoids seen as categories, denoted \mathcal{M} and \mathcal{N} , respectively. Let * be the only object in both categories. A functor $F : \mathcal{M} \to \mathcal{N}$ is defined by

$$\begin{split} F_0 : \operatorname{Obj}(\mathcal{M}) \to \operatorname{Obj}(\mathcal{N}) & F_1 : \operatorname{Ar}(\mathcal{M}) \to \operatorname{Ar}(\mathcal{N}) \\ F_0 : \{*\} \to \{*\} & F_{*,*} : \mathcal{P}(*,*) \to \mathcal{Q}(F_0 *, F_0 *) \\ F_0 * = * & F_{*,*} : f : * \to * \end{split}$$

The functor F must satisfies:

$$\begin{split} F_{*,*} & (m_1 \cdot m_2) = (F_{*,*} \ m_1) \diamond (F_{*,*} \ m_2), \qquad \text{for all } m_1, \ m_2 \ \text{in } \mathcal{M}, \\ & F_{*,*} \ \epsilon = \mu. \end{split}$$

Example

Let (M, \cdot, ϵ) and (N, \diamond, μ) be two monoids seen as categories, denoted \mathcal{M} and \mathcal{N} , respectively. Let * be the only object in both categories. A functor $F : \mathcal{M} \to \mathcal{N}$ is defined by

$$F_{0}: \operatorname{Obj}(\mathcal{M}) \to \operatorname{Obj}(\mathcal{N}) \qquad F_{1}: \operatorname{Ar}(\mathcal{M}) \to \operatorname{Ar}(\mathcal{N})$$

$$F_{0}: \{*\} \to \{*\} \qquad F_{*,*}: \mathcal{P}(*,*) \to \mathcal{Q}(F_{0}*, F_{0}*)$$

$$F_{0}* = * \qquad F_{*,*} f: * \to *$$

The functor F must satisfies:

$$\begin{split} F_{*,*} & (m_1 \cdot m_2) = (F_{*,*} \ m_1) \diamond (F_{*,*} \ m_2), \qquad \text{for all } m_1, \ m_2 \ \text{in } \mathcal{M}, \\ & F_{*,*} \ \epsilon = \mu. \end{split}$$

That is, a functor $F: \mathcal{M} \to \mathcal{N}$ is just a monoid homomorphism.

Examples of Functors

Example

The identity functor $\mathrm{Id}_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$ in a category \mathcal{C} is the functor that maps each object and each arrow of \mathcal{C} to itself.

Example

- Let $F : \mathbf{Mon} \to \mathbf{Set}$ be the forgetful functor which
- (i) sends a monoid to its set of elements and
- (ii) sends a homomorphism between monoids to the corresponding function between sets.

Example

Let [S] be the set of all finite lists of elements of S. The **list functor**

 $\mathsf{List}: \mathbf{Set} \to \mathbf{Set}, \qquad \text{is defined by}$

Example

Let [S] be the set of all finite lists of elements of S. The **list functor**

 $List : \mathbf{Set} \to \mathbf{Set},$ is defined by

 $\mathsf{List}_0: \mathsf{Obj}(\mathbf{Set}) \to \mathsf{Obj}(\mathbf{Set})$ $\mathsf{List}_0 X := [X]$

Example

Let [S] be the set of all finite lists of elements of S. The **list functor**

 $\mathsf{List}: \mathbf{Set} \to \mathbf{Set}, \qquad \text{is defined by}$

 $\begin{array}{lll} \operatorname{List}_{0}:\operatorname{Obj}(\operatorname{\mathbf{Set}})\to\operatorname{Obj}(\operatorname{\mathbf{Set}}) & \operatorname{List}_{1}:\operatorname{Ar}(\operatorname{\mathbf{Set}})\to\operatorname{Ar}(\operatorname{\mathbf{Set}}) \\ \operatorname{List}_{0}X:=[X] & \operatorname{List}_{X,Y}:\operatorname{\mathbf{Set}}(X,Y)\to\operatorname{\mathbf{Set}}(\operatorname{List}_{0}X,\operatorname{List}_{0}Y) \\ & \operatorname{List}_{X,Y}f:[X]\to[Y] \\ & \operatorname{List}_{X,Y}f[x_{1},x_{2},\ldots,x_{n}]:=[f(x_{1}),f(x_{2}),\ldots,f(x_{n})] \end{array}$

Example

The free monoid functor $MList : Set \to Mon$ maps every set X to the free monoid over X.

The free monoid functor $MList : Set \to Mon$ maps every set X to the free monoid over X.

Let $(-)\ast(-)$ be the list concatenation function and let ε be the empty list, the functor is defined by

The free monoid functor $MList : Set \to Mon$ maps every set X to the free monoid over X.

Let $(-)\ast(-)$ be the list concatenation function and let ε be the empty list, the functor is defined by

$$\begin{split} \mathsf{MList}_0 &: \mathrm{Obj}(\mathbf{Set}) \to \mathrm{Obj}(\mathbf{Mon}) \\ \mathsf{MList}_0 X &:= (\mathsf{List}_0 X, *, \varepsilon) \\ &= ([X], *, \varepsilon) \end{split}$$

The free monoid functor $MList : Set \to Mon$ maps every set X to the free monoid over X.

Let $(-)\ast(-)$ be the list concatenation function and let ε be the empty list, the functor is defined by

$$\begin{split} \mathsf{MList}_0 &: \mathrm{Obj}(\mathbf{Set}) \to \mathrm{Obj}(\mathbf{Mon}) & \mathsf{MList}_1 : \mathrm{Ar}(\mathbf{Set}) \to \mathrm{Ar}(\mathbf{Mon}) \\ \mathsf{MList}_0 X &:= (\mathrm{List}_0 X, *, \varepsilon) & \mathsf{MList}_{X,Y} : \mathbf{Set}(X, Y) \to \mathbf{Mon}(\mathsf{MList}_0 X, \mathsf{MList}_0 Y) \\ &= ([X], *, \varepsilon) & \mathsf{MList}_{X,Y} f : ([X], *, \varepsilon) \to ([Y], *, \varepsilon) \\ & \mathsf{MList}_{X,Y} f [x_1, x_2, \dots, x_n] := \mathrm{List}_{X,Y} f [x_1, x_2, \dots, x_n] \end{split}$$

Exercises

Exercise 1

Verify that functors $F : 2_{\Rightarrow} \rightarrow Set$ correspond to directed graphs (textbook, Exercise 45).

Introduction via Maybe (Whiteboard).

Introduction via Maybe (Whiteboard).

The typeclass Functor

class Functor f where
fmap :: (a -> b) -> f a -> f b

The polymorphic type constructor Maybe is a functor whose instance is defined by

instance	Functor	Maybe	where	e
fmap _	Nothing	= Not	thing	
fmap f	(Just a)) = Jus	st (f	a)

The polymorphic type constructor Maybe is a functor whose instance is defined by

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

Exercise 2

Show that the Maybe functor satisfies the functoriality conditions.

ReadInt is a type constructor that turns any type a into a new type that reads a value of Int to create a value of a [Fong, Milewski and Spivak 2020, Example 3.41].

```
data ReadInt a = MkReadInt (Int -> a)
```

ReadInt is a type constructor that turns any type a into a new type that reads a value of Int to create a value of a [Fong, Milewski and Spivak 2020, Example 3.41].

data ReadInt a = MkReadInt (Int -> a)

ReadInt is a functor via the following instance.

instance Functor ReadInt where
fmap f (MkReadInt g) = MkReadInt (f . g)

Example

The (binary) function type (->) :: a -> b -> (a -> b) is a functor.

instanc	e:	Functor			r	((->)	a)	where
fmap	f	g	=	f		g		

Note that fmap :: $(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$.

Exercise 3

To define an instance of Functor for the (binary) product type (,) :: a -> b -> (a,b).

Recall that terminal object (unit type) in Haskell is ()::(). We can define a constant functor by

```
data CUnit a = MkCU ()
instance Functor CUnit where
fmap f (MkCU ()) = MkCU ()
```

Exercise 4 Given a constant 'functor' defined by

```
data CBool a = MkCB Bool
instance Functor CBool where
fmap f (MkCB True) = MkCB False
fmap f (MkCB False) = MkCB True
```

Is CBool really a functor?

Exercise 5 We define a constant functor by

data CInt a = MkCI Int

Show that the polymorphic type constructor CInt can be given the structure of a functor by saying how it lifts morphisms. That is, provide a Haskell function mapCInt of the type $(a \rightarrow b) \rightarrow (CInt a \rightarrow CInt b)$ [Fong, Milewski and Spivak 2020, Exercise 3.46].

Exercise 6

For each of the following type constructors, define two versions of fmap, one of which has a corresponding functor $\mathbf{Hask} \rightarrow \mathbf{Hask}$, and one of which does not [Fong, Milewski and Spivak 2020, Exercise 3.48].

```
(i) data WithString a = WithStr (a, String)
```

```
(ii) data ConstStr a = ConstStr String
```

```
(iii) data List a = Nil | Cons (a, List a)
```

Binary Functors

The Product Category

Definition

Let ${\cal C}$ and ${\cal D}$ be two categories. The product category ${\cal C}\times {\cal D}$ is defined by:

(i) Objects: (C, D), where C and D are objects in C and D, respectively.

(ii) Arrows:
$$(C, D) \xrightarrow{(f, g)} (C', D')$$
, where $C \xrightarrow{f} C'$ and $D \xrightarrow{g} D'$ are arrows in C and D , respectively.

(iii) Composition

$$(f',g')\circ (f,g):=(f'\circ f,g'\circ g).$$

(iv) Identities

 $\operatorname{id}_{(C,D)} := (\operatorname{id}_C, \operatorname{id}_D).$

Definition of a Binary Functor

Definition

Let C, D and \mathcal{E} be three categories. A **binary functor** (or **bifunctor**) is a functor whose domain is a product category, that is, a binary functor from $C \times D$ to \mathcal{E} is a functor

 $F: \mathcal{C} \times \mathcal{D} \to \mathcal{E}.$

Example of Binary Functors

Example

The projection functors $\mathcal{C} \xleftarrow{\pi_1} \mathcal{C} \times \mathcal{D} \xrightarrow{\pi_2} \mathcal{D}$ are binary functors.

Example of Binary Functors

Example

The projection functors $\mathcal{C} \xleftarrow{\pi_1} \mathcal{C} \times \mathcal{D} \xrightarrow{\pi_2} \mathcal{D}$ are binary functors.

(i) For $\pi_1 : \mathcal{C} \times \mathcal{D} \to \mathcal{C}$ we have:

$$(\pi_1)_0 : \operatorname{Obj}(\mathcal{C} \times \mathcal{D}) \to \operatorname{Obj}(\mathcal{C})$$

$$(\pi_1)_0 (C, D) := C$$

$$(\pi_1)_1 : \operatorname{Ar}(\mathcal{C} \times \mathcal{D}) \to \operatorname{Ar}(\mathcal{C})$$

$$(\pi_1)_{(C,D),(C',D')} : \operatorname{Mor}_{\mathcal{C} \times \mathcal{D}}((C, D), (C', D')) \to \operatorname{Mor}_{\mathcal{C}}((\pi_1)_0 (C, D), (\pi_1)_0 (C', D')),$$

$$(\pi_1)_{(C,D),(C',D')} (f,g) : C \to C'$$

$$(\pi_1)_{(C,D),(C',D')} (f,g) := f$$

Example of Binary Functors

Example

The projection functors $\mathcal{C} \xleftarrow{\pi_1} \mathcal{C} \times \mathcal{D} \xrightarrow{\pi_2} \mathcal{D}$ are binary functors.

(i) For
$$\pi_1 : \mathcal{C} \times \mathcal{D} \to \mathcal{C}$$
 we have:

$$\begin{aligned} (\pi_1)_0 &: \operatorname{Obj}(\mathcal{C} \times \mathcal{D}) \to \operatorname{Obj}(\mathcal{C}) \\ (\pi_1)_0 &(C, D) &:= C \\ (\pi_1)_1 &: \operatorname{Ar}(\mathcal{C} \times \mathcal{D}) \to \operatorname{Ar}(\mathcal{C}) \\ (\pi_1)_{(C,D),(C',D')} &: \operatorname{Mor}_{\mathcal{C} \times \mathcal{D}}((C, D), (C', D')) \to \operatorname{Mor}_{\mathcal{C}}((\pi_1)_0 (C, D), (\pi_1)_0 (C', D')), \end{aligned}$$

$$(\pi_1)_{(C,D),(C',D')} (f,g) : C \to C' (\pi_1)_{(C,D),(C',D')} (f,g) := f$$

(ii) Similarly for $\pi_2 : \mathcal{C} \times \mathcal{D} \to \mathcal{D}$.

The Product Functor

Definition

Let C be a category with binaries products, and let $C \times C$ be the product category of C with itself. The **product functor** $\times : C \times C \to C$ is a binary functor defined by

The Product Functor

Definition

Let C be a category with binaries products, and let $C \times C$ be the product category of C with itself. The **product functor** $\times : C \times C \to C$ is a binary functor defined by

$$\begin{split} & \times_{0} : \mathrm{Obj}(\mathcal{C} \times \mathcal{C}) \to \mathrm{Obj}(\mathcal{C}) \\ & \times_{0}(A, B) := A \times B \quad (\text{binary product}) \\ & \times_{1} : \mathrm{Ar}(\mathcal{C} \times \mathcal{C}) \to \mathrm{Ar}(\mathcal{C}) \\ & \times_{(A,A'),(B,B')} : \mathrm{Mor}_{\mathcal{C} \times \mathcal{C}}((A, A'), (B, B')) \to \mathrm{Mor}_{\mathcal{C}}(\times_{0}(A, A'), \times_{0}(B, B')) \\ & \times_{(A,A'),(B,B')}(f,g) : A \times A' \to B \times B' \\ & \times_{(A,A'),(B,B')}(f,g) := f \times g \quad (\text{product morphish}) \end{split}$$

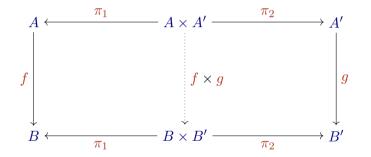
where $f \times g := \langle f \circ \pi_1, g \circ \pi_2 \rangle.$

Binary Functors

The Product Functor

Definition (continuation)

That is, both squares in the following diagram commute.



$$\begin{pmatrix} f \circ \pi_1 = \pi_1 \circ (f \times g) \\ g \circ \pi_2 = \pi_2 \circ (f \times g) \end{pmatrix}$$

N-Ary Functors

Remark

Binary functors can be generalised to n-ary functors.

Small, Large and Locally Small Categories

Small and Large Categories

Introduction

Before defining a category of categories, we need to classify the categories in small and large for avoiding that it be an object of itself.

Small and Large Categories

Definition

A category is **small** iff both the collection of its objects and the collection of its arrows are sets. Otherwise, the category is **large** [Awodey 2010].

Small and Large Categories

Example

The finite categories 1, 2, ..., n, a monoid viewed as a category, and a pre-order viewed as a category are small categories.

The finite categories 1, 2, ..., n, a monoid viewed as a category, and a pre-order viewed as a category are small categories.

Example

The categories Set, Pos, Mon, Grp and Top are large categories.

Definition

A category C is **locally small** iff for all objects A, B the collection C(A, B) is a set [Awodey 2010].

Definition

A category C is **locally small** iff for all objects A, B the collection C(A, B) is a set [Awodey 2010].

Remark

- ► Recall from the previous conventions that if the collection C(A, B) is a set it is called a hom-set and it is denoted hom_C(A, B).
- ▶ Also recall that in the textbook all the collections C(A, B) are hom-sets.

Locally Small Categories

Example

Any small category is locally small.

Any small category is locally small.

Example

The categories Set, Pos, Mon, Grp and Top are locally small categories.

The Category of Small Categories

The Category of Small Categories

Definition

The category \mathbf{Cat} is the category of small categories:

- (i) Objects: Small categories
- (ii) Arrows: Functors

(continued on next slide)

Definition (continuation)

(iii) Composition of functors

Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{E}$ two functors, then

 $G \circ F \qquad : \mathcal{C} \to \mathcal{E}$ $(G \circ F)_0$: $\operatorname{Obj}(\mathcal{C}) \to \operatorname{Obj}(\mathcal{E})$ $(G \circ F)_0 A := G_0 (F_0 A),$ $(G \circ F)_1 : \operatorname{Ar}(\mathcal{C}) \to \operatorname{Ar}(\mathcal{E})$ $(G \circ F)_{AB} : \mathcal{C}(A, B) \to \mathcal{E}((G \circ F)_0 A, (G \circ F)_0 B)$ $(G \circ F)_{AB} f : G_0(F_0 A) \to G_0(F_0 B)$ $(G \circ F) \wedge_{P} f := G_1 (F_1 f).$

The Category of Small Categories

(continued on next slide2)/99

The Category of Small Categories

Definition (continuation)

(iii) Composition of functors

Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{E}$, then

$$G \circ F : \mathcal{C} \to \mathcal{E} := \begin{cases} A & \mapsto G (F A), \\ f & \mapsto G (F f). \end{cases}$$

The Category of Small Categories

Definition (continuation)

(iii) Composition of functors

Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{E}$, then

$$G \circ F : \mathcal{C} \to \mathcal{E} := \begin{cases} A & \mapsto G(FA), \\ f & \mapsto G(Ff). \end{cases}$$

(iv) Identity functors

$$\mathrm{id}_\mathcal{C}:\mathcal{C} o\mathcal{C}:=egin{cases} A&\mapsto A,\ f&\mapsto f. \end{cases}$$

The Category of Small Categories

Remark

The category Cat is large and therefore it is not object of itself.

Contravariance

Introduction

Description

A covariant functor ${\boldsymbol{F}}$ preserves the direction of arrows, that is,

 $F_1(f:A \to B): F_0 A \to F_0 B.$

A contravariant functor G reverses the direction of arrows, that is,

 $G_1(f: A \to B): G_0 B \to G_0 A.$

Contravariant Functors

Definition

Let C and D be two categories. A **contravariant functor** G from C to D is a functor

$$G : \mathcal{C}^{\mathsf{op}} \to \mathcal{D} (\mathsf{or} \ \mathcal{C} \to \mathcal{D}^{\mathsf{op}})$$

$$G_0 : \operatorname{Obj}(\mathcal{C}^{\mathsf{op}}) \to \operatorname{Obj}(\mathcal{D}) \qquad (\mathsf{object-map})$$

$$G_1 : \operatorname{Ar}(\mathcal{C}^{\mathsf{op}}) \to \operatorname{Ar}(\mathcal{D}) \qquad (\mathsf{arrow-map})$$

$$G_{A,B} : \mathcal{C}^{\mathsf{op}}(A,B) \to \mathcal{D}(G_0 B, G_0 A)$$
$$G_{A,B} f: G_0 B \to G_0 A$$

 $G_1(g \circ f) = (G_1 f) \circ (G_1 g)$ $G_1(\operatorname{id}_A) = \operatorname{id}_{(G_0 A)}$

(preservation of composition) (preservation of identities)

Contravariant Functors

Example

Let $\mathcal{P}S$ be the power set of the set S. The contravariant power set functor

 $P^{\mathsf{op}}: \mathbf{Set}^{\mathsf{op}} \to \mathbf{Set}, \quad \text{is defined by}$

Example

Let $\mathcal{P} S$ be the power set of the set S. The contravariant power set functor

 $P^{\mathsf{op}}: \mathbf{Set}^{\mathsf{op}} \to \mathbf{Set}, \qquad \text{is defined by}$

 $P_0^{\mathsf{op}} : \mathrm{Obj}(\mathbf{Set}^{\mathsf{op}}) \to \mathrm{Obj}(\mathbf{Set})$ $P_0^{\mathsf{op}} X := \mathcal{P} X$

Contravariant Functors

Example

Let $\mathcal{P} S$ be the power set of the set S. The contravariant power set functor

 $P^{\mathsf{op}}: \mathbf{Set}^{\mathsf{op}} \to \mathbf{Set}, \qquad \text{is defined by}$

 $P_0^{\mathsf{op}} : \operatorname{Obj}(\mathbf{Set}^{\mathsf{op}}) \to \operatorname{Obj}(\mathbf{Set})$ $P_0^{\mathsf{op}} X := \mathcal{P} X$

 $P_1^{\mathsf{op}} : \operatorname{Ar}(\operatorname{\mathbf{Set}}^{\mathsf{op}}) \to \operatorname{Ar}(\operatorname{\mathbf{Set}})$ $P_{X,Y}^{\mathsf{op}} : \operatorname{\mathbf{Set}}^{\mathsf{op}}(X, Y) \to \operatorname{\mathbf{Set}}(P_0^{\mathsf{op}} Y, P_0^{\mathsf{op}} X)$ $P_{X,Y}^{\mathsf{op}} f : \mathcal{P} Y \to \mathcal{P} X$ $P_{X,Y}^{\mathsf{op}} f T := f^{-1}(T) = \{ x \in X \mid f(x) \in T \}$

Definition (first notation)

Let C be a locally small category and let A be an object of C. The covariant Set-valued hom-functor C(A, -) is defined by

$$\mathcal{C}(A,-): \mathcal{C} \to \mathbf{Set},$$

$$\begin{aligned} \mathcal{C}(A,-)_0 &: \operatorname{Obj}(\mathcal{C}) \to \operatorname{Obj}(\operatorname{\mathbf{Set}}) \\ \mathcal{C}(A,C)_0 &:= \mathcal{C}(A,C), \end{aligned}$$

$$\begin{split} & \mathcal{C}(A,-)_1 : \operatorname{Ar}(\mathcal{C}) \to \operatorname{Ar}(\operatorname{\mathbf{Set}}) \\ & \mathcal{C}(A,-)_{C,D} : \mathcal{C}(C,D) \to \operatorname{\mathbf{Set}}(\mathcal{C}(A,-)_0 \operatorname{\mathbf{C}}, \mathcal{C}(A,-)_0 \operatorname{\mathbf{D}}) \\ & \mathcal{C}(A,f)_{C,D} : \mathcal{C}(A,C) \to \mathcal{C}(A,D) \\ & \mathcal{C}(A,f)_{C,D} \operatorname{\mathbf{g}} := \operatorname{\mathbf{f}} \circ \operatorname{\mathbf{g}}. \end{split}$$

Definition (first notation)

Let C be a (locally small) category and let B be an object of C. The **contravariant Set-valued** hom-functor C(-, B) is defined by

$$\begin{split} \mathcal{C}(-,B) &: \mathcal{C}^{\mathsf{op}} \to \mathbf{Set}, \\ \mathcal{C}(-,B)_0 &: \mathrm{Obj}(\mathcal{C}^{\mathsf{op}}) \to \mathrm{Obj}(\mathbf{Set}) \\ \mathcal{C}(C,B)_0 &:= \mathcal{C}(C,B), \\ \mathcal{C}(-,B)_1 &: \mathrm{Ar}(\mathcal{C}^{\mathsf{op}}) \to \mathrm{Ar}(\mathbf{Set}) \\ \mathcal{C}(-,B)_{C,D} &: \mathcal{C}^{\mathsf{op}}(C,D) \to \mathbf{Set}(\mathcal{C}(-,B)_0 D, \mathcal{C}(-,B)_0 C) \\ \mathcal{C}(f,B)_{C,D} &: \mathcal{C}(D,B) \to \mathcal{C}(C,B) \\ \mathcal{C}(f,B)_{C,D} &: g := g \circ f. \end{split}$$

Exercise 7

Let \mathcal{C} be a (locally small) category. Spell out the definition of the set-valued hom-functor $\mathcal{C}(-,-): \mathcal{C}^{op} \times \mathcal{C} \to \mathbf{Set}$. Verify carefully that it is a functor (textbook, Exercise 47).

Notation

Recall that if C is a locally small category the collection of arrows of an object A to an object B is a set and it is denoted by $\hom_{\mathcal{C}}(A, B)$, that is,

$$\operatorname{hom}_{\mathcal{C}}(A,B) := \left\{ \left. f \in \operatorname{Ar}(\mathcal{C}) \; \right| \; A \stackrel{f}{\longrightarrow} B \right\} =: \mathcal{C}(A,B).$$

Definition (second notation)

Let C be a locally small category and let A be an object of C. The covariant Set-valued hom-functor $\hom_{\mathcal{C}}(A, -)$ is defined by

 $\hom_{\mathcal{C}}(A, -) : \mathcal{C} \to \mathbf{Set},$

$$\hom_{\mathcal{C}}(A, -)_0 : \operatorname{Obj}(\mathcal{C}) \to \operatorname{Obj}(\operatorname{\mathbf{Set}})$$
$$\hom_{\mathcal{C}}(A, C)_0 := \hom_{\mathcal{C}}(A, C)$$

$$\begin{split} &\hom_{\mathcal{C}}(A,-)_{1}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Ar}(\operatorname{\mathbf{Set}})\\ &\hom_{\mathcal{C}}(A,-)_{C,D}:\hom_{\mathcal{C}}(C,D)\to\operatorname{\mathbf{Set}}(\hom_{\mathcal{C}}(A,C),\hom_{\mathcal{C}}(A,D))\\ &\hom_{\mathcal{C}}(A,f:C\to D):\hom_{\mathcal{C}}(A,C)\to\hom_{\mathcal{C}}(A,D)\\ &\hom_{\mathcal{C}}(A,f:C\to D)\,g:=f\circ g \end{split}$$

Definition (second notation)

Let C be a (locally small) category and let B be an object of C. The contravariant Set-valued hom-functor $\hom_{\mathcal{C}}(-, B)$ is defined by

 $\hom_{\mathcal{C}}(-, B) : \mathcal{C}^{\mathsf{op}} \to \mathbf{Set},$

$$\hom_{\mathcal{C}}(-,B)_0: \operatorname{Obj}(\mathcal{C}^{\operatorname{op}}) \to \operatorname{Obj}(\operatorname{Set})$$
$$\hom_{\mathcal{C}}(C,B)_0 := \hom_{\mathcal{C}}(C,B)$$

$$\begin{split} &\hom_{\mathcal{C}}(-,B)_{1}:\operatorname{Ar}(\mathcal{C}^{\operatorname{op}})\to\operatorname{Ar}(\operatorname{Set})\\ &\hom_{\mathcal{C}}(-,B)_{C,D}:\operatorname{hom}_{(\mathcal{C}^{\operatorname{op}})}(C,D)\to\operatorname{Set}(\hom_{\mathcal{C}}(D,B),\hom_{\mathcal{C}}(C,B))\\ &\hom_{\mathcal{C}}(f:C\to D,B):\operatorname{hom}_{\mathcal{C}}(D,B)\to\operatorname{hom}_{\mathcal{C}}(C,B)\\ &\hom_{\mathcal{C}}(f:C\to D,B)\,g:=g\circ f \end{split}$$

Exercise 8

Let C be a (locally small) category. Spell out the definition of the set-valued hom-functor $\hom_{\mathcal{C}}(-,-): \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to \mathbf{Set}$. Verify carefully that it is a functor (textbook, Exercise 47).

Properties of Functors

Faithful and Full Functors

Definition

Let C and D be (locally small) categories and let $F : C \to D$ be a functor.

- (i) The functor F is faithful iff each map $F_{A,B} : \mathcal{C}(A,B) \to \mathcal{D}(F_0A,F_0B)$ is injective.
- (ii) The functor F is **full** iff each map $F_{A,B} : \mathcal{C}(A,B) \to \mathcal{D}(F_0A,F_0B)$ is surjective.

Faithful and Full Functors

Example

The forgetful functor $F : Mon \to Set$ is faithful, but not full (explanation in the whiteboard).

Faithful and Full Functors

Example

The forgetful functor $F : \mathbf{Mon} \to \mathbf{Set}$ is faithful, but not full (explanation in the whiteboard).

Let $(M,\cdot,1_M)$ and $(N,*,1_N)$ be two monoids and let $f:M\to N$ be a homomorphism between them.

- Since $F_1 f = f$, the map F_1 is injective.
- ▶ If $g: M \to N$ is any function in Set such that $g(1_M) \neq 1_N$, then g is not a homomorphism between $(M, \cdot, 1_M)$ and $(N, *, 1_N)$. Therefore the map F_1 is not surjective.

Exercise 9

Show that the free monoid functor $\mathsf{MList}:\mathbf{Set}\to\mathbf{Mon}$ is faithful, but not full.

Exercise 10 (1.3.5.2)

Let $\mathcal C$ be a category with binary products such that, for each pair of objects A, B,

 $\mathcal{C}(A,B) \neq \emptyset.$

(i) Show that the product functor $\times : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is faithful. (ii) Would $-\times -$ still be faithful in the absence of condition (*)? (*)

Preservation and Reflection

Definition

Let P be a property of arrows and let $F : \mathcal{C} \to \mathcal{D}$ be a functor.

```
(i) The functor F preserves the property P iff
if f satisfies P then F_1 f satisfies P.
```

(ii) The functor F reflects the property P iff if $F_1 f$ satisfies P then f satisfies P.

Preservation and Reflection

Example

Show that all functors preserve isomorphisms.

Preservation and Reflection

Example

Show that all functors preserve isomorphisms.

Example

Show that full and faithful functors reflect isomorphisms.

References

References

- Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3–94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).
 - Awodey, S. [2006] (2010). Category Theory. 2nd ed. Vol. 52. Oxford Logic Guides. Oxford University Press (cit. on pp. 63, 66, 67).
 - Fong, B., Milewski, B. and Spivak, D. I. (2020). Programming with Categories (DRAFT). URL: http://brendanfong.com/programmingcats.html (cit. on pp. 17-22, 43, 44, 49, 50).