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Preliminaries
Convention
The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems
on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos
2011].
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Introduction
Question
What about of morphisms between categories?

Answer: Of course, them are functors.
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Definition of a Functor
Definition
A (covariant) functor F : C → D between categories C and D is a mapping of objects to
objects and arrows to arrows, that is,†

F0 : Obj(C)→ Obj(D) (object-map)
F1 : Ar(C)→ Ar(D) (arrow-map)

which for all objects A and arrows f and g, satisfies the functoriality conditions

F1 (g ◦ f) = (F1 g) ◦ (F1 f) (preservation of compositions)
F1 idA = id(F0 A) (preservation of identities)

†The textbook does not use F0 and F1 but F .
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Definition of a Functor
Remark
The functor F : C → D maps objects and arrows of C to objects and arrows of D, respectively.
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Definition of a Functor
Remark
The functor F : C → D preserves domains and codomains, identity arrows, and composition. It
also maps each commutative diagram in C into a commutative diagram in D.
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Definition of a Functor
Remark
Given a functor F : C → D, that is,

F0 : Obj(C)→ Obj(D),
F1 : Ar(C)→ Ar(D),

for all A, B in Obj(C), there is the map

FA,B : C(A, B)→ D(F0 A, F0 B),

and for all f : A→ B,
FA,B f : F0 A→ F0 B.
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Examples of Functors
Example
Let P S be the power set of the set S. The (covariant) power set functor

P : Set→ Set, is defined by

P0 : Obj(Set)→ Obj(Set)
P0 X := P X

P1 : Ar(Set)→ Ar(Set)
PX,Y : Set(X, Y )→ Set(P0 X, P0 Y )

PX,Y f : P X → P Y

PX,Y f S := f(S) = { f(x) | x ∈ S }

(continued on next slide)
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Examples of Functors
Example (continuation)
Let X = {0, 1}, Y = {∅, X} and f : X → Y defined by f(0) = ∅ and f(1) = X. Then,

P0 : Obj(Set)→ Obj(Set)
P0 X := P X = {∅, {0}, {1}, X},

PX,Y f : P X → P Y

PX,Y f ∅ := f(∅) = ∅,
PX,Y f {0} := f({0}) = {∅},
PX,Y f {1} := f({1}) = {X},
PX,Y f {0, 1} := f({0, 1}) = {∅, X}.
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Examples of Functors
Example
Let (P,⪯) and (Q,⪯) be two pre-orders seen as categories, denoted P and Q, respectively. A
functor F : P → Q is defined by

F0 : Obj(P)→ Obj(Q) F1 : Ar(P)→ Ar(Q)
FA,B : P(A, B)→ Q(F0 A, F0 B)
FA,B f : F0 A→ F0 B

Since P(A, B) and Q(F0 A, F0 B) have at most an arrow, the map FA,B exists iff

A ⪯ B implies F0 A ⪯ F0 B.

That is, a functor F : P → Q is just a monotone map which sends, if exists, the unique arrow
A→ B to the unique arrow F0 A→ F0 B.
Example from [Fong, Milewski and Spivak 2020, § 3.2.2].
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Examples of Functors
Example
Let (M, ·, ϵ) and (N, ⋄, µ) be two monoids seen as categories, denoted M and N , respectively.
Let ∗ be the only object in both categories. A functor F :M→N is defined by

F0 : Obj(M)→ Obj(N )
F0 : {∗} → {∗}
F0 ∗ = ∗

F1 : Ar(M)→ Ar(N )
F∗,∗ : P(∗, ∗)→ Q(F0 ∗, F0 ∗)
F∗,∗ f : ∗ → ∗

The functor F must satisfies:

F∗,∗ (m1 ·m2) = (F∗,∗ m1) ⋄ (F∗,∗ m2), for all m1, m2 in M,

F∗,∗ ϵ = µ.

That is, a functor F :M→N is just a monoid homomorphism.

Examples of Functors 23/99



Examples of Functors
Example
Let (M, ·, ϵ) and (N, ⋄, µ) be two monoids seen as categories, denoted M and N , respectively.
Let ∗ be the only object in both categories. A functor F :M→N is defined by

F0 : Obj(M)→ Obj(N )
F0 : {∗} → {∗}
F0 ∗ = ∗

F1 : Ar(M)→ Ar(N )
F∗,∗ : P(∗, ∗)→ Q(F0 ∗, F0 ∗)
F∗,∗ f : ∗ → ∗

The functor F must satisfies:

F∗,∗ (m1 ·m2) = (F∗,∗ m1) ⋄ (F∗,∗ m2), for all m1, m2 in M,

F∗,∗ ϵ = µ.

That is, a functor F :M→N is just a monoid homomorphism.

Examples of Functors 24/99



Examples of Functors
Example
Let (M, ·, ϵ) and (N, ⋄, µ) be two monoids seen as categories, denoted M and N , respectively.
Let ∗ be the only object in both categories. A functor F :M→N is defined by

F0 : Obj(M)→ Obj(N )
F0 : {∗} → {∗}
F0 ∗ = ∗

F1 : Ar(M)→ Ar(N )
F∗,∗ : P(∗, ∗)→ Q(F0 ∗, F0 ∗)
F∗,∗ f : ∗ → ∗

The functor F must satisfies:

F∗,∗ (m1 ·m2) = (F∗,∗ m1) ⋄ (F∗,∗ m2), for all m1, m2 in M,

F∗,∗ ϵ = µ.

That is, a functor F :M→N is just a monoid homomorphism.

Examples of Functors 25/99



Examples of Functors
Example
Let (M, ·, ϵ) and (N, ⋄, µ) be two monoids seen as categories, denoted M and N , respectively.
Let ∗ be the only object in both categories. A functor F :M→N is defined by

F0 : Obj(M)→ Obj(N )
F0 : {∗} → {∗}
F0 ∗ = ∗

F1 : Ar(M)→ Ar(N )
F∗,∗ : P(∗, ∗)→ Q(F0 ∗, F0 ∗)
F∗,∗ f : ∗ → ∗

The functor F must satisfies:

F∗,∗ (m1 ·m2) = (F∗,∗ m1) ⋄ (F∗,∗ m2), for all m1, m2 in M,

F∗,∗ ϵ = µ.

That is, a functor F :M→N is just a monoid homomorphism.

Examples of Functors 26/99



Examples of Functors
Example
Let (M, ·, ϵ) and (N, ⋄, µ) be two monoids seen as categories, denoted M and N , respectively.
Let ∗ be the only object in both categories. A functor F :M→N is defined by

F0 : Obj(M)→ Obj(N )
F0 : {∗} → {∗}
F0 ∗ = ∗

F1 : Ar(M)→ Ar(N )
F∗,∗ : P(∗, ∗)→ Q(F0 ∗, F0 ∗)
F∗,∗ f : ∗ → ∗

The functor F must satisfies:

F∗,∗ (m1 ·m2) = (F∗,∗ m1) ⋄ (F∗,∗ m2), for all m1, m2 in M,

F∗,∗ ϵ = µ.

That is, a functor F :M→N is just a monoid homomorphism.

Examples of Functors 27/99



Examples of Functors
Example
The identity functor IdC : C → C in a category C is the functor that maps each object and
each arrow of C to itself.
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Examples of Functors
Example
Let F : Mon→ Set be the forgetful functor which
(i) sends a monoid to its set of elements and
(ii) sends a homomorphism between monoids to the corresponding function between sets.
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Examples of Functors
Example
Let [S] be the set of all finite lists of elements of S. The list functor

List : Set→ Set, is defined by

List0 : Obj(Set)→ Obj(Set)
List0 X := [X]

List1 : Ar(Set)→ Ar(Set)
ListX,Y : Set(X, Y )→ Set(List0 X, List0 Y )

ListX,Y f : [X]→ [Y ]
ListX,Y f [x1, x2, . . . , xn] := [f(x1), f(x2), . . . , f(xn)]
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Examples of Functors
Example
The free monoid functor MList : Set→Mon maps every set X to the free monoid over X.

Let (−) ∗ (−) be the list concatenation function and let ε be the empty list, the functor is
defined by

MList0 : Obj(Set)→ Obj(Mon)
MList0 X := (List0 X, ∗, ε)

= ([X], ∗, ε)

MList1 : Ar(Set)→ Ar(Mon)
MListX,Y : Set(X, Y )→Mon(MList0 X, MList0 Y )

MListX,Y f : ([X], ∗, ε)→ ([Y ], ∗, ε)
MListX,Y f [x1, x2, . . . , xn] := ListX,Y f [x1, x2, . . . , xn]
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Exercises
Exercise 1
Verify that functors F : 2⇒ → Set correspond to directed graphs (textbook, Exercise 45).
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Functors in Haskell
Introduction via Maybe
(Whiteboard).

The typeclass Functor

class Functor f where
fmap :: (a -> b) -> f a -> f b
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Functors in Haskell
Example
The polymorphic type constructor Maybe is a functor whose instance is defined by

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

Exercise 2
Show that the Maybe functor satisfies the functoriality conditions.
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Functors in Haskell
Example
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Functors in Haskell
Example
ReadInt is a type constructor that turns any type a into a new type that reads a value of Int
to create a value of a [Fong, Milewski and Spivak 2020, Example 3.41].

data ReadInt a = MkReadInt (Int -> a)

ReadInt is a functor via the following instance.

instance Functor ReadInt where
fmap f ( MkReadInt g) = MkReadInt (f . g)
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Functors in Haskell
Example
The (binary) function type (->) :: a -> b -> (a -> b) is a functor.

instance Functor ((->) a) where
fmap f g = f . g

Note that fmap :: (b -> c) -> (a -> b) -> (a -> c).
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Functors in Haskell
Exercise 3
To define an instance of Functor for the (binary) product type (,) :: a -> b -> (a,b).
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Functors in Haskell
Example
Recall that terminal object (unit type) in Haskell is ()::(). We can define a constant functor by

data CUnit a = MkCU ()

instance Functor CUnit where
fmap f (MkCU ()) = MkCU ()
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Functors in Haskell
Exercise 4
Given a constant ‘functor’ defined by

data CBool a = MkCB Bool

instance Functor CBool where
fmap f (MkCB True) = MkCB False
fmap f (MkCB False) = MkCB True

Is CBool really a functor?
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Functors in Haskell
Exercise 5
We define a constant functor by

data CInt a = MkCI Int

Show that the polymorphic type constructor CInt can be given the structure of a functor
by saying how it lifts morphisms. That is, provide a Haskell function mapCInt of the type
(a -> b) -> (CInt a -> CInt b) [Fong, Milewski and Spivak 2020, Exercise 3.46].

Functors in Haskell 49/99



Functors in Haskell
Exercise 6
For each of the following type constructors, define two versions of fmap, one of which has a
corresponding functor Hask→ Hask, and one of which does not [Fong, Milewski and Spivak
2020, Exercise 3.48].
(i) data WithString a = WithStr (a, String)

(ii) data ConstStr a = ConstStr String

(iii) data List a = Nil | Cons (a, List a)
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The Product Category
Definition
Let C and D be two categories. The product category C × D is defined by:
(i) Objects: (C, D), where C and D are objects in C and D, respectively.

(ii) Arrows: (C, D)
(f, g)
−−−−→ (C ′, D′), where C

f−→ C ′ and D
g−→ D′ are arrows in C and D,

respectively.

(iii) Composition
(f ′, g′) ◦ (f, g) := (f ′ ◦ f, g′ ◦ g).

(iv) Identities
id(C,D) := (idC , idD).
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Definition of a Binary Functor
Definition
Let C, D and E be three categories. A binary functor (or bifunctor) is a functor whose domain
is a product category, that is, a binary functor from C × D to E is a functor

F : C × D → E .
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Example of Binary Functors
Example
The projection functors C π1←− C ×D π2−→ D are binary functors.

(i) For π1 : C × D → C we have:

(π1)0 : Obj(C × D)→ Obj(C)
(π1)0 (C, D) := C

(π1)1 : Ar(C × D)→ Ar(C)
(π1)(C,D),(C′,D′) : MorC×D((C, D), (C ′, D′))→ MorC((π1)0 (C, D), (π1)0 (C ′, D′)),

(π1)(C,D),(C′,D′) (f, g) : C → C ′

(π1)(C,D),(C′,D′) (f, g) := f

(ii) Similarly for π2 : C × D → D.
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The Product Functor

Definition
Let C be a category with binaries products, and let C × C be the product category of C with
itself. The product functor × : C × C → C is a binary functor defined by

×0 : Obj(C × C)→ Obj(C)
×0 (A, B) := A×B (binary product)

×1 : Ar(C × C)→ Ar(C)
×(A,A′),(B,B′) : MorC×C((A, A′), (B, B′))→ MorC(×0 (A, A′),×0 (B, B′))

×(A,A′),(B,B′) (f, g) : A×A′ → B ×B′

×(A,A′),(B,B′) (f, g) := f × g (product morphish)

where f × g := ⟨f ◦ π1, g ◦ π2⟩.
(continued on next slide)
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(continued on next slide)
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The Product Functor
Definition (continuation)
That is, both squares in the following diagram commute.

A×A′A A′

B ×B′B B′

π1 π2

f g

π1 π2

f × g
(

f ◦ π1 = π1 ◦ (f × g)
g ◦ π2 = π2 ◦ (f × g)

)

Binary Functors 59/99



N -Ary Functors
Remark
Binary functors can be generalised to n-ary functors.
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Small and Large Categories
Introduction
Before defining a category of categories, we need to classify the categories in small and large
for avoiding that it be an object of itself.
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Small and Large Categories
Definition
A category is small iff both the collection of its objects and the collection of its arrows are sets.
Otherwise, the category is large [Awodey 2010].
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Small and Large Categories
Example
The finite categories 1, 2, . . . , n, a monoid viewed as a category, and a pre-order viewed as a
category are small categories.

Example
The categories Set, Pos, Mon, Grp and Top are large categories.
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Small and Large Categories
Example
The finite categories 1, 2, . . . , n, a monoid viewed as a category, and a pre-order viewed as a
category are small categories.

Example
The categories Set, Pos, Mon, Grp and Top are large categories.
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Locally Small Categories
Definition
A category C is locally small iff for all objects A, B the collection C(A, B) is a set [Awodey
2010].

Remark
▶ Recall from the previous conventions that if the collection C(A, B) is a set it is called a

hom-set and it is denoted homC(A, B).
▶ Also recall that in the textbook all the collections C(A, B) are hom-sets.

Small, Large and Locally Small Categories 66/99



Locally Small Categories
Definition
A category C is locally small iff for all objects A, B the collection C(A, B) is a set [Awodey
2010].

Remark
▶ Recall from the previous conventions that if the collection C(A, B) is a set it is called a

hom-set and it is denoted homC(A, B).
▶ Also recall that in the textbook all the collections C(A, B) are hom-sets.
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Locally Small Categories
Example
Any small category is locally small.

Example
The categories Set, Pos, Mon, Grp and Top are locally small categories.
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Locally Small Categories
Example
Any small category is locally small.

Example
The categories Set, Pos, Mon, Grp and Top are locally small categories.
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The Category of Small Categories
Definition
The category Cat is the category of small categories:
(i) Objects: Small categories
(ii) Arrows: Functors

(continued on next slide)
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The Category of Small Categories

Definition (continuation)

(iii) Composition of functors
Let F : C → D and G : D → E two functors, then

G ◦ F : C → E

(G ◦ F )0 : Obj(C)→ Obj(E)
(G ◦ F )0 A := G0 (F0 A),

(G ◦ F )1 : Ar(C)→ Ar(E)
(G ◦ F )A,B : C(A, B)→ E((G ◦ F )0 A, (G ◦ F )0 B)

(G ◦ F )A,B f : G0 (F0 A)→ G0 (F0 B)
(G ◦ F )A,B f := G1 (F1 f).
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The Category of Small Categories
Definition (continuation)

(iii) Composition of functors
Let F : C → D and G : D → E , then

G ◦ F : C → E :=
{

A 7→ G (F A),
f 7→ G (F f).

(iv) Identity functors

idC : C → C :=
{

A 7→ A,

f 7→ f.
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The Category of Small Categories
Definition (continuation)

(iii) Composition of functors
Let F : C → D and G : D → E , then

G ◦ F : C → E :=
{

A 7→ G (F A),
f 7→ G (F f).

(iv) Identity functors

idC : C → C :=
{

A 7→ A,

f 7→ f.
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The Category of Small Categories
Remark
The category Cat is large and therefore it is not object of itself.
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Introduction
Description
A covariant functor F preserves the direction of arrows, that is,

F1 (f : A→ B) : F0 A→ F0 B.

A contravariant functor G reverses the direction of arrows, that is,

G1 (f : A→ B) : G0 B → G0 A.
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Contravariant Functors
Definition
Let C and D be two categories. A contravariant functor G from C to D is a functor

G : Cop → D (or C → Dop)
G0 : Obj(Cop)→ Obj(D) (object-map)
G1 : Ar(Cop)→ Ar(D) (arrow-map)

GA,B : Cop(A, B)→ D(G0 B, G0 A)
GA,B f : G0 B → G0 A

G1(g ◦ f) = (G1 f) ◦ (G1 g) (preservation of composition)
G1 (idA) = id(G0 A) (preservation of identities)
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Contravariant Functors
Example
Let P S be the power set of the set S. The contravariant power set functor

P op : Setop → Set, is defined by

P op
0 : Obj(Setop)→ Obj(Set)

P op
0 X := P X

P op
1 : Ar(Setop)→ Ar(Set)

P op
X,Y : Setop(X, Y )→ Set(P op

0 Y , P op
0 X)

P op
X,Y f : P Y → P X

P op
X,Y f T := f−1(T ) = {x ∈ X | f(x) ∈ T }
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Contravariant Functors
Example
Let P S be the power set of the set S. The contravariant power set functor

P op : Setop → Set, is defined by

P op
0 : Obj(Setop)→ Obj(Set)

P op
0 X := P X

P op
1 : Ar(Setop)→ Ar(Set)

P op
X,Y : Setop(X, Y )→ Set(P op

0 Y , P op
0 X)

P op
X,Y f : P Y → P X

P op
X,Y f T := f−1(T ) = {x ∈ X | f(x) ∈ T }
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Contravariant Functors
Example
Let P S be the power set of the set S. The contravariant power set functor

P op : Setop → Set, is defined by

P op
0 : Obj(Setop)→ Obj(Set)

P op
0 X := P X

P op
1 : Ar(Setop)→ Ar(Set)

P op
X,Y : Setop(X, Y )→ Set(P op

0 Y , P op
0 X)

P op
X,Y f : P Y → P X

P op
X,Y f T := f−1(T ) = {x ∈ X | f(x) ∈ T }
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Hom-Functors
Definition (first notation)
Let C be a locally small category and let A be an object of C. The covariant Set-valued
hom-functor C(A,−) is defined by

C(A,−) : C → Set,

C(A,−)0 : Obj(C)→ Obj(Set)
C(A, C)0 := C(A, C),

C(A,−)1 : Ar(C)→ Ar(Set)
C(A,−)C,D : C(C, D)→ Set(C(A,−)0 C, C(A,−)0 D)

C(A, f)C,D : C(A, C)→ C(A, D)
C(A, f)C,D g := f ◦ g.
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Hom-Functors
Definition (first notation)
Let C be a (locally small) category and let B be an object of C. The contravariant Set-valued
hom-functor C(−, B) is defined by

C(−, B) : Cop → Set,

C(−, B)0 : Obj(Cop)→ Obj(Set)
C(C, B)0 := C(C, B),

C(−, B)1 : Ar(Cop)→ Ar(Set)
C(−, B)C,D : Cop(C, D)→ Set(C(−, B)0 D, C(−, B)0 C)

C(f, B)C,D : C(D, B)→ C(C, B)
C(f, B)C,D g := g ◦ f.
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Hom-Functors
Exercise 7
Let C be a (locally small) category. Spell out the definition of the set-valued hom-functor
C(−,−) : Cop × C → Set. Verify carefully that it is a functor (textbook, Exercise 47).
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Hom-Functors
Notation
Recall that if C is a locally small category the collection of arrows of an object A to an object B
is a set and it is denoted by homC(A, B), that is,

homC(A, B) :=
{

f ∈ Ar(C)
∣∣∣∣ A

f−→ B

}
=: C(A, B).
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Hom-Functors
Definition (second notation)
Let C be a locally small category and let A be an object of C. The covariant Set-valued
hom-functor homC(A,−) is defined by

homC(A,−) : C → Set,

homC(A,−)0 : Obj(C)→ Obj(Set)
homC(A, C)0 := homC(A, C)

homC(A,−)1 : Ar(C)→ Ar(Set)
homC(A,−)C,D : homC(C, D)→ Set(homC(A, C), homC(A, D))

homC(A, f : C → D) : homC(A, C)→ homC(A, D)
homC(A, f : C → D) g := f ◦ g
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Hom-Functors
Definition (second notation)
Let C be a (locally small) category and let B be an object of C. The contravariant Set-valued
hom-functor homC(−, B) is defined by

homC(−, B) : Cop → Set,

homC(−, B)0 : Obj(Cop)→ Obj(Set)
homC(C, B)0 := homC(C, B)

homC(−, B)1 : Ar(Cop)→ Ar(Set)
homC(−, B)C,D : hom(Cop)(C, D)→ Set(homC(D, B), homC(C, B))

homC(f : C → D, B) : homC(D, B)→ homC(C, B)
homC(f : C → D, B) g := g ◦ f
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Hom-Functors
Exercise 8
Let C be a (locally small) category. Spell out the definition of the set-valued hom-functor
homC(−,−) : Cop × C → Set. Verify carefully that it is a functor (textbook, Exercise 47).
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Faithful and Full Functors
Definition
Let C and D be (locally small) categories and let F : C → D be a functor.
(i) The functor F is faithful iff each map FA,B : C(A, B)→ D(F0 A, F0 B) is injective.
(ii) The functor F is full iff each map FA,B : C(A, B)→ D(F0 A, F0 B) is surjective.
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Faithful and Full Functors
Example
The forgetful functor F : Mon→ Set is faithful, but not full (explanation in the whiteboard).

Let (M, ·, 1M ) and (N, ∗, 1N ) be two monoids and let f : M → N be a homomorphism between
them.
▶ Since F1 f = f , the map F1 is injective.
▶ If g : M → N is any function in Set such that g (1M ) ̸= 1N , then g is not a homomorphism

between (M, ·, 1M ) and (N, ∗, 1N ). Therefore the map F1 is not surjective.

Properties of Functors 92/99



Faithful and Full Functors
Example
The forgetful functor F : Mon→ Set is faithful, but not full (explanation in the whiteboard).

Let (M, ·, 1M ) and (N, ∗, 1N ) be two monoids and let f : M → N be a homomorphism between
them.
▶ Since F1 f = f , the map F1 is injective.
▶ If g : M → N is any function in Set such that g (1M ) ̸= 1N , then g is not a homomorphism

between (M, ·, 1M ) and (N, ∗, 1N ). Therefore the map F1 is not surjective.
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Faithful and Full Functors
Exercise 9
Show that the free monoid functor MList : Set→Mon is faithful, but not full.

Exercise 10 (1.3.5.2)
Let C be a category with binary products such that, for each pair of objects A, B,

C(A, B) ̸= ∅. (*)

(i) Show that the product functor × : C × C → C is faithful.
(ii) Would −×− still be faithful in the absence of condition (*)?
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Preservation and Reflection
Definition
Let P be a property of arrows and let F : C → D be a functor.
(i) The functor F preserves the property P iff

if f satisfies P then F1 f satisfies P .

(ii) The functor F reflects the property P iff
if F1 f satisfies P then f satisfies P .
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Preservation and Reflection
Example
Show that all functors preserve isomorphisms.

Example
Show that full and faithful functors reflect isomorphisms.
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Preservation and Reflection
Example
Show that all functors preserve isomorphisms.

Example
Show that full and faithful functors reflect isomorphisms.
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