Category Theory and Functional Programming Some Basic Constructions

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

Initial and Terminal Objects

Products

Coproducts

References

Initial and Terminal Objects

Initial and Terminal Objects

Introduction
We shall introduce abstract characterisations of the empty set and the one-element sets in set theory.

Initial and Terminal Objects

Definition
Let \mathcal{C} be a category. An object 0 in \mathcal{C} is initial iff for any object A there is a unique arrow (universal property)

$$
0 \rightarrow A .
$$

Initial and Terminal Objects

Definition

Let \mathcal{C} be a category. An object 0 in \mathcal{C} is initial iff for any object A there is a unique arrow (universal property)

$$
0 \rightarrow A
$$

Definition
Let \mathcal{C} be a category. An object 1 in \mathcal{C} is terminal iff for any object A there is a unique arrow (universal property)

$$
A \rightarrow 1
$$

Initial and Terminal Objects

Remark
Initial and terminal objects are dual notions.

Initial and Terminal Objects

Example

- In Set, the empty set is an initial object and any one-element set is a terminal object.
- In Pos, the poset (\emptyset, \emptyset) is an initial object and the poset $(\{*\},\{(*, *)\})$ is a terminal object.
- In Top, the topological space $(\emptyset,\{\emptyset\})$ is an initial object and the topological space $(\{*\},\{\emptyset,\{*\}\})$ is a terminal object.

Initial and Terminal Objects

Example

- In Set, the empty set is an initial object and any one-element set is a terminal object.
- In Pos, the poset (\emptyset, \emptyset) is an initial object and the poset $(\{*\},\{(*, *)\})$ is a terminal object.
- In Top, the topological space $(\emptyset,\{\emptyset\})$ is an initial object and the topological space $(\{*\},\{\emptyset,\{*\}\})$ is a terminal object.

Exercise 1

Verify the initial and terminal objects in the previous example. In each case, identify the canonical arrows (Exercise 18).

Initial and Terminal Objects

Exercise 2

For the category Rel, identify the initial and terminal objects, and the canonical arrows (Exercise 19).

Exercise 3

Suppose that a monoid, viewed as a category, has either an initial or a terminal object. What must the monoid be? (Exercise 20).

Initial and Terminal Objects

Example

In a poset, seen as a category,
(i) an object is initial iff it is the least element,
(ii) an object is terminal iff it is the greatest element.

Initial and Terminal Objects

Example

In a poset, seen as a category,
(i) an object is initial iff it is the least element,
(ii) an object is terminal iff it is the greatest element.

Question
Does a category need to have either an initial object or a terminal object?

Initial and Terminal Objects

Example

In a poset, seen as a category,
(i) an object is initial iff it is the least element,
(ii) an object is terminal iff it is the greatest element.

Question
Does a category need to have either an initial object or a terminal object?
Answer: No. The poset (\mathbb{Z}, \leq), seen as a category, has neither.

Initial and Terminal Objects

Example

For Hask, the Void data type ${ }^{\dagger}$ is an initial object.

```
data Void
absurd :: Void -> a
absurd a = case a of {}
```

${ }^{\dagger}$ From the module Data. Void of the base library.

Initial and Terminal Objects

Example

For Hask, the Unit data type is a terminal object.

```
data Unit = MkUnit
t :: a -> Unit
t _ = MkUnit
```


Initial and Terminal Objects

Example

For Hask, the Unit data type is a terminal object.

```
data Unit = MkUnit
t :: a -> Unit
t _ = MkUnit
```

The terminal object is built-in as () whose unique term is (), that is, () : : ().

Initial and Terminal Objects

Theorem (Proposition 21)

Initial objects are unique up to isomorphism, that is, if 0 and 0^{\prime} are initial objects in a category \mathcal{C} then there exists a unique isomorphism $0 \stackrel{\cong}{\rightrightarrows} 0^{\prime}$.

Initial and Terminal Objects

Proof.
Let 0 and 0^{\prime} be initial objects in a category \mathcal{C}. Because 0 and 0^{\prime} are initial objects we have that the following diagram commutes:

$$
\binom{j \circ i=\mathrm{id}_{0}}{i \circ j=\mathrm{id}_{0^{\prime}}}
$$

That is, there is an unique isomorphism $i: 0 \xrightarrow{\cong} 0^{\prime}$.

Initial and Terminal Objects

Theorem

Terminal objects are unique up to isomorphism.
Exercise 4
Prove the previous theorem.

Products

Products

Introduction

We shall introduce abstract characterisations of products (e.g. Cartesian products of sets and direct products of groups).

Binary Products

Example (Cartesian product in set theory)
(i) Let X and Y be sets. The Cartesian product of X and Y is defined by

$$
X \times Y:=\{(x, y) \mid x \in X \wedge y \in Y\}
$$

where the ordered pair (x, y) can be defined by

$$
(x, y):=\{\{x, y\}, y\} \quad \text { (Kuratowski's definition) }
$$

and it satisfies that

$$
(x, y)=\left(x^{\prime}, y^{\prime}\right) \quad \text { iff } \quad x=x^{\prime} \text { and } y=y^{\prime}
$$

Binary Products

Example (Cartesian product in set theory (continuation))
(ii) Two coordinate projections on $X \times Y$ are defined by

$$
\begin{aligned}
& \pi_{1}: X \times Y \rightarrow X:=(x, y) \mapsto x \\
& \pi_{2}: X \times Y \rightarrow X:=(x, y) \mapsto y
\end{aligned}
$$

where

$$
c=\left(\pi_{1} c, \pi_{2} c\right), \quad \text { for all } c \in X \times Y
$$

Binary Products

Example (Cartesian product in set theory (continuation))
(iii) Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$. The pair \boldsymbol{f} and \boldsymbol{g} function is defined by

$$
\langle f, g\rangle: Z \rightarrow X \times Y:=(x, y) \mapsto(f x, g x)
$$

Binary Products

Example (Cartesian product in set theory (continuation))
(iv) We state the Cartesian product properties by saying that the following diagram commutes.

$$
\binom{\pi_{1} \circ\langle x, y\rangle=x}{\pi_{2} \circ\langle x, y\rangle=y}
$$

Binary Products

Definition

Let A_{1} and A_{2} be objects in a category \mathcal{C}. A binary product of A_{1} and A_{2} is a triple $\left(P, \pi_{1}, \pi_{2}\right)$, where P is an object in \mathcal{C}, denoted $A_{1} \times A_{2}$, and π_{1} and π_{2} are two arrows

$$
A_{1} \stackrel{\pi_{1}}{\leftrightarrows} A_{1} \times A_{2} \xrightarrow{\pi_{2}} A_{2}
$$

such that for every object B and arrows

$$
A_{1} \stackrel{f_{1}}{\leftarrow} B \xrightarrow{f_{2}} A_{2}
$$

there exists an unique arrow

$$
\left\langle f_{1}, f_{2}\right\rangle: B \rightarrow A_{1} \times A_{2}
$$

such that the following diagram commutes (universal property):

Binary Products

Definition (continuation)

$$
\binom{\pi_{1} \circ\left\langle f_{1}, f_{2}\right\rangle=f_{1}}{\pi_{2} \circ\left\langle f_{1}, f_{2}\right\rangle=f_{2}}
$$

Binary Products

Example

- In Set, products are the Cartesian products.
- In Pos, products are Cartesian products with the product order. ${ }^{\dagger}$
- In Top, products are Cartesian products with the product topology.

[^0]
Binary Products

Example

- In Set, products are the Cartesian products.
- In Pos, products are Cartesian products with the product order. ${ }^{\dagger}$
- In Top, products are Cartesian products with the product topology.

Exercise 5
Verify the previous claims (Exercise 19).

[^1]
Binary Products

Definition
A category \mathcal{C} has binary products iff each pair of objects of \mathcal{C} have a binary product.

Binary Products

Example

Since it possible to define the Cartesian product between any pair of sets, the category Set has binary products.

Binary Products

ExampleSince it possible to define the Cartesian product between any pair of sets, the category Set hasbinary products.
ExampleIn a poset, seen as a category, products are (binary) greatest lower bounds (meets). Thiscategory has not binary products.

Binary Products

Exercise 6
Prove Proposition 27.
Exercise 7
Prove Proposition 28.

Ternary Products

Definition

Let A_{1}, A_{2} and A_{3} be objects in a category \mathcal{C}. A ternary product of A_{1}, A_{2} and A_{3} is a quadruple

$$
\left(P, \pi_{1}, \pi_{2}, \pi_{3}\right)
$$

where P is an object in \mathcal{C}, denoted $A_{1} \times A_{2} \times A_{3}$, and $\pi_{1}, \pi_{2}, \pi_{3}$ are arrows from $A_{1} \times A_{2} \times A_{3}$ to A_{1}, A_{2}, A_{3}, respectively, such that for every object B and arrows f_{1}, f_{2}, f_{3} from B to A_{1}, A_{2}, A_{3}, respectively, there exists an unique arrow

$$
\left\langle f_{1}, f_{2}, f_{3}\right\rangle: B \rightarrow A_{1} \times A_{2} \times A_{3}
$$

such that the following diagram commutes (universal property):

Ternary Products

Definition (continuation)

$$
\left(\begin{array}{l}
\pi_{1} \circ\left\langle f_{1}, f_{2}, f_{3}\right\rangle=f_{1} \\
\pi_{2} \circ\left\langle f_{1}, f_{2}, f_{3}\right\rangle=f_{2} \\
\pi_{3} \circ\left\langle f_{1}, f_{2}, f_{3}\right\rangle=f_{3}
\end{array}\right)
$$

Nullary Products

Remark
By removing the objects A_{i} (which also remove the projections π_{i} and the equations $\pi_{i} \circ\left\langle f_{i}\right\rangle=f_{i}$) from the binary (or ternary) products, we get the nullary products.

Nullary Products

Remark
By removing the objects A_{i} (which also remove the projections π_{i} and the equations $\pi_{i} \circ\left\langle f_{i}\right\rangle=f_{i}$) from the binary (or ternary) products, we get the nullary products.

Definition

A nullary product in a category \mathcal{C} is an object P, such that for any object B, there is a unique arrow $B \rightarrow P$ (universal property).

Nullary Products

Remark

By removing the objects A_{i} (which also remove the projections π_{i} and the equations $\pi_{i} \circ\left\langle f_{i}\right\rangle=f_{i}$) from the binary (or ternary) products, we get the nullary products.

Definition

A nullary product in a category \mathcal{C} is an object P, such that for any object B, there is a unique arrow $B \rightarrow P$ (universal property).

Remark
Note that the above object P is just a terminal object of \mathcal{C}.

Nullary Products

Exercise 8

What is the product of the empty family? (Exercise 29)

Finite Products

Definition
A category has finite products iff the category has products for all $n \in \mathbb{N}$.

Finite Products

Exercise 9

Show that if a category has binary and nullary products then it has finite products (Exercise 30).

General Products

Introduction
We shall generalise finite products to products of arbitrary objects.

General Products

Example (Cartesian product of a family of sets)
(i) Let $\left\{X_{i}\right\}_{i \in I}$ be a family of sets indexed by I. The Cartesian product of the family of sets $\left\{X_{i}\right\}_{i \in I}$ is defined by

$$
\prod_{i \in I} X_{i}=\left\{f: I \rightarrow \bigcup_{i \in I} X_{i} \mid \text { for all } i \in I, f i \in X_{i}\right\}
$$

General Products

Example (Cartesian product of a family of sets)
(i) Let $\left\{X_{i}\right\}_{i \in I}$ be a family of sets indexed by I. The Cartesian product of the family of sets $\left\{\boldsymbol{X}_{i}\right\}_{i \in I}$ is defined by

$$
\prod_{i \in I} X_{i}=\left\{f: I \rightarrow \bigcup_{i \in I} X_{i} \mid \text { for all } i \in I, f i \in X_{i}\right\}
$$

(ii) For $i \in I$, the \boldsymbol{i} th-coordinate projection map is defined by

$$
\pi_{i}:\left(\prod_{j \in J} X_{j}\right) \rightarrow X_{i}:=f \mapsto f i
$$

General Products

Definition

Let $\left\{A_{i}\right\}_{i \in I}$ be a family of objects in a category \mathcal{C}. A product for the family $\left\{A_{i}\right\}_{i \in I}$ is an object $\prod_{i \in I} A_{i}$ and arrows

$$
\pi_{i}:\left(\prod_{i \in I} A_{i}\right) \rightarrow A_{i}
$$

such that for every object B and arrows

$$
f_{i}: B \rightarrow A_{i}
$$

there exists an unique arrow

$$
\left\langle f_{i}\right\rangle_{i \in I}: B \rightarrow \prod_{i \in I} A_{i}
$$

General Products

Definition (continuation)
such that, for $i \in I$, the following diagram commutes (universal property):

$$
\left(\pi_{i} \circ\left\langle f_{i}\right\rangle_{i \in I}=f_{i}\right)
$$

Coproducts

Coproducts

Introduction
We shall introduce abstract characterisations of disjoint unions (also called disjoint sums).

Binary Coproducts

Example (Disjoint union in set theory)
(i) Let X and Y be sets. The disjoint union of X and Y is defined by

$$
\begin{aligned}
X+Y & :=(\{1\} \times X) \cup(\{2\} \times Y) \\
& =\{(1, x) \mid x \in X\} \cup\{(2, y) \mid b \in Y\} .
\end{aligned}
$$

Binary Coproducts

Example (Disjoint union in set theory (continuation))
(ii) Two injections for $X+Y$ are defined by

$$
\begin{aligned}
& \mathrm{in}_{1}: X \rightarrow X+Y:=x \mapsto(1, x), \\
& \mathrm{in}_{2}: Y \rightarrow X+Y:=y \mapsto(2, y) .
\end{aligned}
$$

Binary Coproducts

Example (Disjoint union in set theory (continuation))
(iii) Let $f: X \rightarrow Z$ and $g: Y \rightarrow Z$. The case \boldsymbol{f} or \boldsymbol{g} function is defined by

$$
\begin{aligned}
& {[f, g]: X+Y \rightarrow Z} \\
& {[f, g](1, x):=f x} \\
& {[f, g](2, y):=g x}
\end{aligned}
$$

Binary Coproducts

Example (Disjoint union set theory (continuation))
(iv) We state the disjoint union properties by saying that the following diagram commutes.

$$
\binom{[x, y] \circ \mathrm{in}_{1}=x}{[x, y] \circ \mathrm{in}_{2}=y}
$$

Binary Coproducts

Definition

Let A_{1} and A_{2} be objects in a category \mathcal{C}. A binary coproduct of A_{1} and A_{2} is a triple ($P, \mathrm{in}_{1}, \mathrm{in}_{2}$), where P is an object in \mathcal{C}, denoted $A_{1}+A_{2}$, and in_{1} and in_{1} are two arrows

$$
A_{1} \xrightarrow{\mathrm{in} 1} A_{1}+A_{2} \stackrel{\mathrm{in} 2}{\leftrightarrows} A_{2},
$$

such that for every object B and arrows

$$
A_{1} \xrightarrow{f_{1}} B \stackrel{f_{2}}{\rightleftarrows} A_{2}
$$

there exists an unique arrow

$$
\left[f_{1}, f_{2}\right]: A_{1} \times A_{2} \rightarrow B
$$

such that the following diagram commutes (universal property):
(continued on next slide)

Binary Coproducts

Definition (continuation)

$$
\binom{\left[f_{1}, f_{2}\right] \circ \mathrm{in}_{1}=f_{1}}{\left[f_{1}, f_{2}\right] \circ \mathrm{in}_{2}=f_{2}}
$$

Binary Coproducts

Example

- In Set, disjoint unions are binary coproducts.
- In Pos, disjoint unions are binary coproducts.
- In Top, topological disjoint unions are binary coproducts.

Binary Coproducts

Example

- In Set, disjoint unions are binary coproducts.
- In Pos, disjoint unions are binary coproducts.
- In Top, topological disjoint unions are binary coproducts.

Exercise 10
Verify the previous claims (Exercise 33).

Binary Coproducts

Example
In a poset, seen as a category, binary coproducts are (binary) least upper bounds (joins).

Binary Coproducts

Example
 In a poset, seen as a category, binary coproducts are (binary) least upper bounds (joins).
 Remark
 The previous example show that, a difference of the disjoint union in set theory, the binary coproduct between any pair of objects of a category may not exist.

Binary Coproducts

Duality

Binary products and binary co-products are dual notions.

References

References

R Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3-94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).

[^0]: ${ }^{\dagger}$ The textbook uses 'pointwise order' instead of 'product order'.

[^1]: ${ }^{\dagger}$ The textbook uses 'pointwise order' instead of 'product order'.

