Category Theory and Functional Programming Some Basic Constructions

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

Initial and Terminal Objects

Products

Coproducts

References

Introduction

We shall introduce abstract characterisations of the empty set and the one-element sets in set theory.

Definition

Let C be a category. An object 0 in C is **initial** iff for any object A there is a unique arrow (universal property)

 $0 \rightarrow A$.

Definition

Let C be a category. An object 0 in C is **initial** iff for any object A there is a unique arrow (universal property)

 $0 \rightarrow A$.

Definition

Let C be a category. An object 1 in C is **terminal** iff for any object A there is a unique arrow (universal property)

 $A \rightarrow 1.$

Remark

Initial and terminal objects are dual notions.

Example

- ▶ In Set, the empty set is an initial object and any one-element set is a terminal object.
- ▶ In Pos, the poset (\emptyset, \emptyset) is an initial object and the poset $(\{*\}, \{(*, *)\})$ is a terminal object.
- ► In Top, the topological space (Ø, {Ø}) is an initial object and the topological space ({*}, {Ø, {*}}) is a terminal object.

Example

- ▶ In Set, the empty set is an initial object and any one-element set is a terminal object.
- ▶ In Pos, the poset (\emptyset, \emptyset) is an initial object and the poset $(\{*\}, \{(*, *)\})$ is a terminal object.
- ► In Top, the topological space (Ø, {Ø}) is an initial object and the topological space ({*}, {Ø, {*}}) is a terminal object.

Exercise 1

Verify the initial and terminal objects in the previous example. In each case, identify the canonical arrows (Exercise 18).

Exercise 2

For the category **Rel**, identify the initial and terminal objects, and the canonical arrows (Exercise 19).

Exercise 3

Suppose that a monoid, viewed as a category, has either an initial or a terminal object. What must the monoid be? (Exercise 20).

Example

- In a poset, seen as a category,
 - (i) an object is initial iff it is the least element,
- (ii) an object is terminal iff it is the greatest element.

Example

- In a poset, seen as a category,
- (i) an object is initial iff it is the least element,
- (ii) an object is terminal iff it is the greatest element.

Question

Does a category need to have either an initial object or a terminal object?

Example

In a poset, seen as a category,

- (i) an object is initial iff it is the least element,
- (ii) an object is terminal iff it is the greatest element.

Question

Does a category need to have either an initial object or a terminal object?

Answer: No. The poset (\mathbb{Z}, \leq) , seen as a category, has neither.

Example

For $\mathbf{Hask},$ the Void data type † is an initial object.

```
data Void
absurd :: Void -> a
absurd a = case a of {}
```

[†]From the module Data.Void of the base library.

Example

For Hask, the Unit data type is a terminal object.

```
data Unit = MkUnit
t :: a -> Unit
t = MkUnit
```

Example

For Hask, the Unit data type is a terminal object.

```
data Unit = MkUnit
t :: a -> Unit
t = MkUnit
```

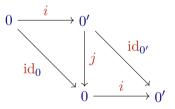
The terminal object is built-in as () whose unique term is (), that is, ()::().

Theorem (Proposition 21)

Initial objects are unique up to isomorphism, that is, if 0 and 0' are initial objects in a category C then there exists a unique isomorphism $0 \stackrel{\cong}{\longrightarrow} 0'$.

Proof.

Let 0 and 0' be initial objects in a category C. Because 0 and 0' are initial objects we have that the following diagram commutes:



$$egin{pmatrix} j\circ i=\mathrm{id}_0\ i\circ j=\mathrm{id}_{0'} \end{pmatrix}$$

That is, there is an unique isomorphism $i: 0 \xrightarrow{\cong} 0'$.

Theorem

Terminal objects are unique up to isomorphism.

Exercise 4

Prove the previous theorem.

Products

Products

Introduction

We shall introduce abstract characterisations of products (e.g. Cartesian products of sets and direct products of groups).

Example (Cartesian product in set theory)

(i) Let X and Y be sets. The **Cartesian product** of X and Y is defined by

 $X \times Y := \{ (x, y) \mid x \in X \land y \in Y \},\$

where the **ordered pair** (x, y) can be defined by

 $(x,y) := \{\{x,y\},y\}$ (Kuratowski's definition)

and it satisfies that

 $(x,y)=(x',y') \quad \text{iff} \quad x=x' \text{ and } y=y'.$

Example (Cartesian product in set theory (continuation))

(ii) Two coordinate projections on $X\times Y$ are defined by

$$\pi_1 : X \times Y \to X := (x, y) \mapsto x,$$

$$\pi_2 : X \times Y \to X := (x, y) \mapsto y,$$

where

$$c = (\pi_1 c, \pi_2 c), \text{ for all } c \in X \times Y.$$

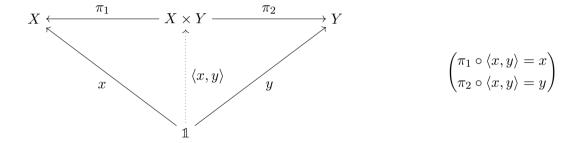
Example (Cartesian product in set theory (continuation))

(iii) Let $f: Z \to X$ and $g: Z \to Y$. The **pair** f and g function is defined by

 $\langle f,g\rangle:Z\to X\times Y:=(x,y)\mapsto (f\,x,g\,x).$

Example (Cartesian product in set theory (continuation))

(iv) We state the Cartesian product properties by saying that the following diagram commutes.



Definition

Let A_1 and A_2 be objects in a category C. A **binary product** of A_1 and A_2 is a triple (P, π_1, π_2) , where P is an object in C, denoted $A_1 \times A_2$, and π_1 and π_2 are two arrows

$$A_1 \xleftarrow{\pi_1} A_1 \times A_2 \xrightarrow{\pi_2} A_2,$$

such that for every object B and arrows

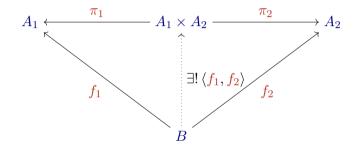
$$A_1 \xleftarrow{f_1} B \xrightarrow{f_2} A_2$$

there exists an unique arrow

 $\langle f_1, f_2 \rangle : B \to A_1 \times A_2$

such that the following diagram commutes (universal property):

Definition (continuation)



 $\begin{pmatrix} \pi_1 \circ \langle f_1, f_2 \rangle = f_1 \\ \pi_2 \circ \langle f_1, f_2 \rangle = f_2 \end{pmatrix}$

Example

- ► In Set, products are the Cartesian products.
- ▶ In **Pos**, products are Cartesian products with the product order.[†]
- ▶ In Top, products are Cartesian products with the product topology.

[†]The textbook uses 'pointwise order' instead of 'product order'.

Example

- ► In Set, products are the Cartesian products.
- ▶ In **Pos**, products are Cartesian products with the product order.[†]
- ▶ In Top, products are Cartesian products with the product topology.

Exercise 5 Verify the previous claims (Exercise 19).

[†]The textbook uses 'pointwise order' instead of 'product order'.

Definition

A category ${\mathcal C}$ has binary products iff each pair of objects of ${\mathcal C}$ have a binary product.

Example

Since it possible to define the Cartesian product between any pair of sets, the category \mathbf{Set} has binary products.

Example

Since it possible to define the Cartesian product between any pair of sets, the category \mathbf{Set} has binary products.

Example

In a poset, seen as a category, products are (binary) greatest lower bounds (meets). This category has not binary products.

Exercise 6 Prove Proposition 27.

Exercise 7 Prove Proposition 28. Definition

Let A_1 , A_2 and A_3 be objects in a category C. A **ternary product** of A_1 , A_2 and A_3 is a quadruple

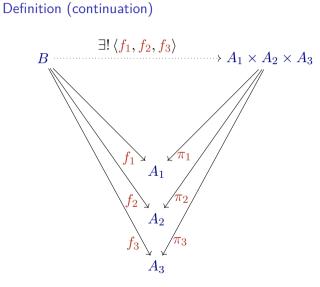
 $(P, \pi_1, \pi_2, \pi_3),$

where P is an object in C, denoted $A_1 \times A_2 \times A_3$, and π_1, π_2, π_3 are arrows from $A_1 \times A_2 \times A_3$ to A_1, A_2, A_3 , respectively, such that for every object B and arrows f_1, f_2, f_3 from B to A_1, A_2, A_3 , respectively, there exists an unique arrow

 $\langle f_1, f_2, f_3 \rangle : B \to A_1 \times A_2 \times A_3$

such that the following diagram commutes (universal property):

Ternary Products



$$egin{pmatrix} \pi_1 \circ \langle f_1, f_2, f_3
angle = f_1 \ \pi_2 \circ \langle f_1, f_2, f_3
angle = f_2 \ \pi_3 \circ \langle f_1, f_2, f_3
angle = f_3 \end{pmatrix}$$

Remark

By removing the objects A_i (which also remove the projections π_i and the equations $\pi_i \circ \langle f_i \rangle = f_i$) from the binary (or ternary) products, we get the nullary products.

Remark

By removing the objects A_i (which also remove the projections π_i and the equations $\pi_i \circ \langle f_i \rangle = f_i$) from the binary (or ternary) products, we get the nullary products.

Definition

A nullary product in a category C is an object P, such that for any object B, there is a unique arrow $B \to P$ (universal property).

Remark

By removing the objects A_i (which also remove the projections π_i and the equations $\pi_i \circ \langle f_i \rangle = f_i$) from the binary (or ternary) products, we get the nullary products.

Definition

A nullary product in a category C is an object P, such that for any object B, there is a unique arrow $B \to P$ (universal property).

Remark

Note that the above object P is just a terminal object of C.

Exercise 8 What is the product of the empty family? (Exercise 29)

Finite Products

Definition

A category has finite products iff the category has products for all $n \in \mathbb{N}$.

Finite Products

Exercise 9

Show that if a category has binary and nullary products then it has finite products (Exercise 30).

Introduction

We shall generalise finite products to products of arbitrary objects.

Example (Cartesian product of a family of sets)

(i) Let $\{X_i\}_{i \in I}$ be a family of sets indexed by I. The Cartesian product of the family of sets $\{X_i\}_{i \in I}$ is defined by

$$\prod_{i \in I} X_i = \left\{ f : I \to \bigcup_{i \in I} X_i \ \middle| \text{ for all } i \in I, f i \in X_i \right\}.$$

Example (Cartesian product of a family of sets)

(i) Let $\{X_i\}_{i \in I}$ be a family of sets indexed by *I*. The **Cartesian product of the family of** sets $\{X_i\}_{i \in I}$ is defined by

$$\prod_{i \in I} X_i = \left\{ f : I \to \bigcup_{i \in I} X_i \ \middle| \text{ for all } i \in I, f i \in X_i \right\}.$$

(ii) For $i \in I$, the *i*th-coordinate projection map is defined by

$$\pi_i: \left(\prod_{j \in J} X_j\right) \to X_i := f \mapsto f i.$$

Definition

Let $\{A_i\}_{i \in I}$ be a family of objects in a category C. A product for the family $\{A_i\}_{i \in I}$ is an object $\prod_{i \in I} A_i$ and arrows

$$\pi_i : \left(\prod_{i \in I} A_i\right) \to A_i$$

such that for every object B and arrows

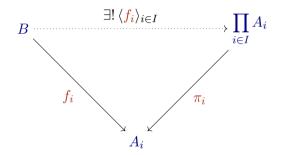
$$f_i: B \to A_i$$

there exists an unique arrow

$$\langle f_i \rangle_{i \in I} : B \to \prod_{i \in I} A_i$$

Definition (continuation)

such that, for $i \in I$, the following diagram commutes (universal property):



$$\left(\pi_i \circ \langle f_i
angle_{i \in I} = f_i
ight)$$

Coproducts

Coproducts

Introduction

We shall introduce abstract characterisations of disjoint unions (also called disjoint sums).

Example (Disjoint union in set theory)

(i) Let X and Y be sets. The **disjoint union** of X and Y is defined by

$$\begin{split} X+Y &:= (\{1\} \times X) \cup (\{2\} \times Y) \\ &= \{\, (1,x) \mid x \in X \,\} \cup \{\, (2,y) \mid b \in Y \,\}. \end{split}$$

Example (Disjoint union in set theory (continuation))

(ii) Two **injections** for X + Y are defined by

$$\begin{split} & \mathsf{in}_1: X \to X + Y := x \mapsto (1,x), \\ & \mathsf{in}_2: Y \to X + Y := y \mapsto (2,y). \end{split}$$

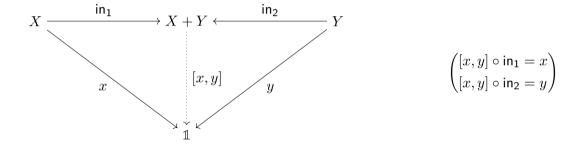
Example (Disjoint union in set theory (continuation))

(iii) Let $f: X \to Z$ and $g: Y \to Z$. The case f or g function is defined by

$$\begin{split} [f,g] &: X + Y \to Z \\ [f,g] \, (1,x) &:= f \, x, \\ [f,g] \, (2,y) &:= g \, x. \end{split}$$

Example (Disjoint union set theory (continuation))

(iv) We state the disjoint union properties by saying that the following diagram commutes.



Definition

Let A_1 and A_2 be objects in a category C. A **binary coproduct** of A_1 and A_2 is a triple (P, in_1, in_2) , where P is an object in C, denoted $A_1 + A_2$, and in_1 and in_1 are two arrows

$$A_1 \xrightarrow{\operatorname{in}_1} A_1 + A_2 \xleftarrow{\operatorname{in}_2} A_2,$$

such that for every object B and arrows

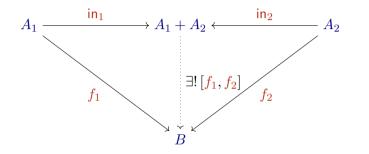
$$A_1 \xrightarrow{f_1} B \xleftarrow{f_2} A_2$$

there exists an unique arrow

 $[f_1, f_2]: A_1 \times A_2 \to B$

such that the following diagram commutes (universal property):

Definition (continuation)



$$egin{aligned} &\left(\left[f_1, f_2
ight] \circ \mathsf{in}_1 = f_1
ight) \ &\left(\left[f_1, f_2
ight] \circ \mathsf{in}_2 = f_2
ight) \end{aligned}$$

Example

- ► In Set, disjoint unions are binary coproducts.
- ▶ In **Pos**, disjoint unions are binary coproducts.
- ▶ In Top, topological disjoint unions are binary coproducts.

Example

- ► In Set, disjoint unions are binary coproducts.
- ► In **Pos**, disjoint unions are binary coproducts.
- ▶ In Top, topological disjoint unions are binary coproducts.

Exercise 10 Verify the previous claims (Exercise 33).

Example

In a poset, seen as a category, binary coproducts are (binary) least upper bounds (joins).

Example

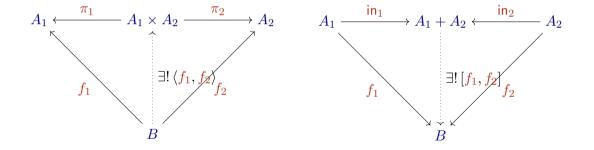
In a poset, seen as a category, binary coproducts are (binary) least upper bounds (joins).

Remark

The previous example show that, a difference of the disjoint union in set theory, the binary coproduct between any pair of objects of a category may not exist.

Duality

Binary products and binary co-products are dual notions.



References

References

Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3–94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).