Category Theory and Functional Programming Appendix

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

Monoids

Groups

Algebraic Structures

Pre-orders

Partial Orders

Relational Structures

Topological Spaces

Category Theory

References

Monoids

Monoids

Definition

Let M be a set and let $(-) \cdot (-)$ be a binary relation on M and $1 \in M$. The structure $(M, \cdot, 1)$ is a **monoid** iff it satisfies

$$\forall x \forall y \forall z ((x \cdot y) \cdot z = x \cdot (y \cdot z))$$
 (associativity)
$$\forall x (x \cdot 1 = x = 1 \cdot x)$$
 (identity)

Monoids 5/55

Monoids

Example

The structure $(\mathbb{N},+,0)$ is a monoid.

Monoids 6/55

Free Monoid

Definition

Let Σ be an alphabet (a set), let Σ^* be the set of strings over Σ including the empty string ε , and let $(-)\cdot(-)$ be the concatenation of strings. Then $(\Sigma^*,\cdot,\varepsilon)$ is the **free monoid** on the set Σ .

Monoids 7/55

Monoid Homomorphisms

Definition

A **homomorphism** between monoids is a map between the domains of the monoids that preserves the monoid operation and the identity element.

Monoids 8/55

Monoid Homomorphisms

Definition

A **homomorphism** between monoids is a map between the domains of the monoids that preserves the monoid operation and the identity element.

Let $(M,\cdot,1_M)$ and $(N,*,1_N)$ be two monoids. A homomorphism from $(M,\cdot,1_M)$ to $(N,*,1_N)$ is a function $h:M\to N$ such that for all x,y in M:

$$h(x \cdot y) = h x * h y,$$

$$h(1_M) = 1_N.$$

Monoids 9/55

Definition

Let G be a set, $(-) \cdot (-)$ be a binary relation on G and $1 \in G$. The structure $(G, \cdot, 1)$ is a **group** iff it satisfies

$$\forall x \forall y \forall z ((x \cdot y) \cdot z = x \cdot (y \cdot z))$$
 (associativity)
$$\forall x (x \cdot 1 = x = 1 \cdot x)$$
 (identity)
$$\forall x \exists x' (x \cdot x' = 1 = x' \cdot x)$$
 (inverse)

Groups 11/55

Example

The structure $(\mathbb{Z},+,0)$ is a group.

Groups 12/55

Example

The structure $(\mathbb{Z},+,0)$ is a group.

Example

The monoid $(\Sigma^*,\cdot,\varepsilon)$ is not a group.

Groups 13/55

Direct Product

Definition

Let $(G, *, 1_G)$ and $(H, \diamond, 1_H)$ be two groups. The **direct product** of G and H is the group $(G \times H, \cdot, (1_G, 1_H))$ where

$$(-) \cdot (-) : G \times H \to G \times H$$

 $(g_1, h_1) \cdot (g_2, h_2) := (g_1 * g_2, h_1 \diamond h_2).$

Groups 14/55

Direct Product

Definition

Let $(G, *, 1_G)$ and $(H, \diamond, 1_H)$ be two groups. The **direct product** of G and H is the group $(G \times H, \cdot, (1_G, 1_H))$ where

$$(-) \cdot (-) : G \times H \to G \times H$$

 $(g_1, h_1) \cdot (g_2, h_2) := (g_1 * g_2, h_1 \diamond h_2).$

Exercise 1

Show that the direct product of two groups is a group.

Groups 15/55

Definition

An **algebraic structure** on a set $A \neq \emptyset$ is essentially a collection of n-ary operations on A [Birkhoff 1946, 1987].

Algebraic Structures 17/55

Description

A **homomorphism** is a structure-preserving map between two algebraic structures.

Algebraic Structures 18/55

Definition

A homomorphism φ between two algebraic structures is [Cohn 1981]:

- **a monomorphism** if φ is an injection,
- **an epimorphism** if φ is a surjection,
- ightharpoonup an **endomorphism** if φ is from an algebraic structure to itself,
- **>** an **isomorphism** if φ is a bijection,
- \blacktriangleright an **automorphism** if φ is a bijective endomorphism.

Algebraic Structures 19/55

Definition

Let P be a set and let \leq be a binary relation on P. The relation \leq is a **pre-order** (or **quasi-order**) iff it satisfies

The pair (P, \preceq) is a **pre-ordered set** (or **quasi-ordered set**).

Pre-orders 21/55

Example

The pair (\mathbb{N},\leq) is a pre-ordered set.

Pre-orders 22/55

Example

The pair (\mathbb{N}, \leq) is a pre-ordered set.

Question

Is the pair (\emptyset, \emptyset) a pre-ordered set?

Pre-orders 23/55

Example

The pair (\mathbb{N}, \leq) is a pre-ordered set.

Question

Is the pair (\emptyset, \emptyset) a pre-ordered set?

Answer: Yes!

Pre-orders 24/55

Example

The pair (\mathbb{N}, \leq) is a pre-ordered set.

Question

Is the pair (\emptyset, \emptyset) a pre-ordered set?

Answer: Yes!

Example

The pair $(\{*\}, \{(*,*)\})$ is a pre-ordered set.

Pre-orders 25/55

Definition

Let (S, \preceq_S) and (T, \preceq_T) be two pre-ordered sets. A **homomorphism** from (S, \preceq_S) to (T, \preceq_T) is a function $h: S \to T$ such that, for all $x, y \in S$,

 $x \preceq_S y$ implies $h x \preceq_T h y$.

Pre-orders 26/55

Definition

Let (S, \preceq_S) and (T, \preceq_T) be two pre-ordered sets. A **homomorphism** from (S, \preceq_S) to (T, \preceq_T) is a function $h: S \to T$ such that, for all $x, y \in S$,

 $x \preceq_S y$ implies $h x \preceq_T h y$.

That is, a homomorphism from (S, \leq_S) to (T, \leq_T) is a monotone map $h: S \to T$.

Pre-orders 27/55

Definition

Let P be a set and let \leq be a binary relation on P. The relation \leq is a **partial order** iff it satisfies

The pair (P, \preceq) is a **partially ordered set** (or **poset**).

Partial Orders 29/55

Example

The pre-ordered sets (\mathbb{N},\leq) , (\emptyset,\emptyset) and $(\{*\},\{(*,*)\})$ are posets.

Partial Orders 30/55

Question

Are pre-ordered sets which are not posets?

Partial Orders 31/55

Question

Are pre-ordered sets which are not posets?

Answer: Yes! The figure shows an example.

Partial Orders 32/55

Definition

Let (S, \preceq_S) and (T, \preceq_T) be two posets. A **homomorphism** from (S, \preceq_S) to (T, \preceq_T) is a function $h: S \to T$ such that, for all $x, y \in S$,

 $x \preceq_S y$ implies $h x \preceq_T h y$.

Partial Orders 33/55

Definition

Let (S, \preceq_S) and (T, \preceq_T) be two posets. An **order isomorphism** from (S, \preceq_S) to (T, \preceq_T) is a one-one correspondence $h: S \to T$ such that, for all $x, y \in S$,

 $x \preceq_S y$ iff $h x \preceq_T h y$.

Partial Orders 34/55

Definition

Let (S, \preceq_S) and (T, \preceq_T) be two posets. The **product of posets** S and T is the poset $(S \times T, \preceq)$ where the **product order** \preceq is defined by:

For all $x_1, x_2 \in S$ and $y_1, y_2 \in T$,

$$(x_1, y_1) \preceq (x_2, y_2) \qquad \qquad \mathsf{i}$$

iff $x_1 \leq_S x_2$ and $y_1 \leq_T y_2$.

Partial Orders 35/55

Relational Structures

Relational Structures

Definition

Let L be a signature of a relational structure consisting of function and relation symbols, and let A and B be two L-structures. A **homomorphism** from A to B is a mapping h from the domain of A to the domain of B such that †

(i) for each n-ary function symbol F in L,

$$h(F^A x_1 \dots x_n) = F^B (h x_1) \dots (h x_n),$$

(ii) for each n-ary relation symbol R in L,

$$R^A(x_1,\ldots,x_n)$$
 implies $R^B(h\,x_1,\ldots,h\,x_n)$.

Relational Structures 37/55

[†]From https://en.wikipedia.org/wiki/Homomorphism.

Definition

A **topology** on a set X is a collection τ of subsets of X such that

- (i) \emptyset and X are belong to τ ,
- (ii) the union of (finite or infinite) members of τ belongs to τ ,
- (iii) the intersection of finite members of τ belongs to τ .

The pair (X, τ) is a **topological space**.

Topological Spaces 39/55

Example

Let τ be the set of all open intervals in \mathbb{R} . The pair (\mathbb{R}, τ) is a topological space.

Topological Spaces 40/55

Example

Let τ be the set of all open intervals in \mathbb{R} . The pair (\mathbb{R}, τ) is a topological space.

Example

Let $\mathcal{P} S$ be the power set of the set S. The pair $(S, \mathcal{P} S)$ is a topological space.

Topological Spaces 41/55

Example

The pair $(\emptyset, \{\emptyset\})$ is a topological space.

Topological Spaces 42/55

Example

The pair $(\emptyset, \{\emptyset\})$ is a topological space.

Example

The pair $(\{*\}, \{\emptyset, \{*\}\})$ is a topological space.

Topological Spaces 43/55

Definition

Let (X, τ_X) and (Y, τ_Y) be topological spaces. A function $f: X \to Y$ is **continuous** iff for all $V \in \tau_Y$, $f^{-1}(V) \in \tau_X$.

Topological Spaces 44/55

Definition

Let (X,τ) be topological space. A **base** (or **basis**) for τ is a collection $B \subset \tau$ such that every open set is a union of elements of B.

Topological Spaces 45/55

Definition

Let (X, τ_X) and (Y, τ_Y) be topological spaces. The **product topological space** of X and Y is the topological space $(X \times Y, \tau_{X \times Y})$, where $\tau_{X \times Y}$ is the topology generated by the Cartesian product $U_X \times U_Y \subset X \times Y$ of open sets $U_x \subset X$ and $U_Y \subseteq Y$.

Topological Spaces 46/55

Category Theory

Remark

The following definition was adapted from [Mac Lane 1971].

Category Theory 48/55

Remark

The following definition was adapted from [Mac Lane 1971].

Definition

Axiomatic Category Theory is the following two-sorted first-order theory with equality:

▶ The sorts of the theory are Obj() (objects), denoted by A, B, C, \ldots , and Ar() (arrows), denoted by f, g, h, \ldots

(continued on next slide)

Category Theory 49/55

Definition (continuation)

▶ The undefined terms (language) of the theory are the function symbols[†]

```
\begin{array}{ll} \operatorname{dom}: \langle \operatorname{Ar}(), \operatorname{Obj}() \rangle & \textit{(domain)}, \\ \operatorname{cod}: \langle \operatorname{Ar}(), \operatorname{Obj}() \rangle & \textit{(codomain)}, \\ \operatorname{id}: \langle \operatorname{Obj}(), \operatorname{Ar}() \rangle & \textit{(identity arrow)}, \end{array}
```

and the *relation* symbol

$$comp : \langle Ar(), Ar(), Ar() \rangle$$
 (arrow composition).

(continued on next slide)

Category Theory

[†]The notation $\langle s_1, s_2, \dots, s_n \rangle$ denotes a sort in many-sorted logic. See, for example, [Enderton 2001].

Definition (continuation)

Notation. An arrow f with $\operatorname{dom} f = A$ and $\operatorname{cod} f = B$ is written $f : A \to B$.

Notation. The arrow id(A) is denoted id_A .

(continued on next slide)

Category Theory 51/55

Definition (continuation)

- ► Non-logical axioms
 - (i) For all arrows f and g, if $f:A\to B$ and $g:B\to C$ then there exists an unique arrow $h:A\to C$, such as $\mathrm{comp}(f,g,h)$.

Notation. If comp(f, g, h) then the arrow h is denoted $g \circ f$.

(ii) For all arrows f, g and h, if $f: A \to B$, $g: B \to C$ and $h: C \to D$ then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

- (iii) For all object A, $dom(id_A) = cod(id_A) = A$.
- (iv) For all arrow f, if $f: A \to B$ then

$$f \circ \mathrm{id}_A = f = \mathrm{id}_B \circ f.$$

Category Theory 52/55

Remark

In general, would be incorrect to define categories as *models* of the previous two-sorted theory because, because *set theory models* would not include *large* categories.

Category Theory 53/55

References

References

Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3–94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).

Birkhoff, G. (1946). Universal Algebra. In: Comptes Rendus du Premier Congrès Canadien de Mathématiques. University of Toronto Press, pp. 310–326 (cit. on p. 17).

— (1987). Universal Algebra. In: Selected Papers on Algebra and Topology by Garrett Birkhoff. Ed. by Rota, G.-C. and Oliveira, J. S. Birkhäuser, pp. 146–162 (cit. on p. 17).

Cohn, P. M. [1965] (1981). Universal Algebra. Revised edition. Vol. 6. Mathematics and Its Applications. D. Reidel Publishing Company (cit. on p. 19).

Enderton, H. B. [1972] (2001). A Mathematical Introduction to Logic. 2nd ed. Academic Press (cit. on p. 50).

Mac Lane, S. (1971). Categorical Algebra and Set-Theoretic Foundations. In: Axiomatic Set Theory, Part I. Ed. by Scott, D. S. Vol. XIII. Proceedings of Symposia in Pure Mathematics. American Mathematical Society, pp. 231–240 (cit. on pp. 48, 49).

References 55/55