Category Theory and Functional Programming Appendix

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2022-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos 2011].

Outline

Monoids
Groups
Algebraic Structures
Pre-orders
Partial Orders
Relational Structures
Topological Spaces
Category Theory
References

Monoids

Monoids

Definition
Let M be a set and let $(-) \cdot(-)$ be a binary relation on M and $1 \in M$. The structure $(M, \cdot, 1)$ is a monoid iff it satisfies

$$
\begin{aligned}
& \forall x \forall y \forall z((x \cdot y) \cdot z=x \cdot(y \cdot z)) \\
& \forall x(x \cdot 1=x=1 \cdot x)
\end{aligned}
$$

(associativity)
(identity)

Monoids

Example

The structure $(\mathbb{N},+, 0)$ is a monoid.

Free Monoid

Definition

Let Σ be an alphabet (a set), let Σ^{*} be the set of strings over Σ including the empty string ε, and let $(-) \cdot(-)$ be the concatenation of strings. Then $\left(\Sigma^{*}, \cdot, \varepsilon\right)$ is the free monoid on the set Σ.

Monoid Homomorphisms

Definition
A homomorphism between monoids is a map between the domains of the monoids that preserves the monoid operation and the identity element.

Monoid Homomorphisms

Definition

A homomorphism between monoids is a map between the domains of the monoids that preserves the monoid operation and the identity element.
Let $\left(M, \cdot, 1_{M}\right)$ and $\left(N, *, 1_{N}\right)$ be two monoids. A homomorphism from $\left(M, \cdot, 1_{M}\right)$ to $\left(N, *, 1_{N}\right)$ is a function $h: M \rightarrow N$ such that for all x, y in M :

$$
\begin{aligned}
h(x \cdot y) & =h x * h y, \\
h\left(1_{M}\right) & =1_{N} .
\end{aligned}
$$

Groups

Groups

Definition

Let G be a set, $(-) \cdot(-)$ be a binary relation on G and $1 \in G$. The structure $(G, \cdot, 1)$ is a group iff it satisfies

$$
\begin{aligned}
& \forall x \forall y \forall z((x \cdot y) \cdot z=x \cdot(y \cdot z)) \\
& \forall x(x \cdot 1=x=1 \cdot x) \\
& \forall x \exists x^{\prime}\left(x \cdot x^{\prime}=1=x^{\prime} \cdot x\right)
\end{aligned}
$$

(associativity)
(identity)
(inverse)

Groups

Example

The structure $(\mathbb{Z},+, 0)$ is a group.

Groups

Example

The structure $(\mathbb{Z},+, 0)$ is a group.
Example
The monoid $\left(\Sigma^{*}, \cdot, \varepsilon\right)$ is not a group.

Direct Product

Definition
Let $\left(G, *, 1_{G}\right)$ and $\left(H, \diamond, 1_{H}\right)$ be two groups. The direct product of G and H is the group $\left(G \times H, \cdot,\left(1_{G}, 1_{H}\right)\right)$ where

$$
\begin{aligned}
& (-) \cdot(-): G \times H \rightarrow G \times H \\
& \left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right):=\left(g_{1} * g_{2}, h_{1} \diamond h_{2}\right) .
\end{aligned}
$$

Direct Product

Definition

Let $\left(G, *, 1_{G}\right)$ and $\left(H, \diamond, 1_{H}\right)$ be two groups. The direct product of G and H is the group $\left(G \times H, \cdot,\left(1_{G}, 1_{H}\right)\right)$ where

$$
\begin{aligned}
& (-) \cdot(-): G \times H \rightarrow G \times H \\
& \left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right):=\left(g_{1} * g_{2}, h_{1} \diamond h_{2}\right) .
\end{aligned}
$$

Exercise 1

Show that the direct product of two groups is a group.

Algebraic Structures

Algebraic Structures

Definition
An algebraic structure on a set $A \neq \emptyset$ is essentially a collection of n-ary operations on A [Birkhoff 1946, 1987].

Algebraic Structures

Description

A homomorphism is a structure-preserving map between two algebraic structures.

Algebraic Structures

Definition

A homomorphism φ between two algebraic structures is [Cohn 1981]:

- a monomorphism if φ is an injection,
- an epimorphism if φ is a surjection,
- an endomorphism if φ is from an algebraic structure to itself,
- an isomorphism if φ is a bijection,
- an automorphism if φ is a bijective endomorphism.

Pre-orders

Pre-orders

Definition

Let P be a set and let \preceq be a binary relation on P. The relation \preceq is a pre-order (or quasiorder) iff it satisfies

$$
\begin{aligned}
& \forall x(x \preceq x) \\
& \forall x \forall y \forall z(x \preceq y \preceq z \Rightarrow x \preceq z)
\end{aligned}
$$

(reflexivity)
(transitivity)

The pair (P, \preceq) is a pre-ordered set (or quasi-ordered set).

Pre-orders

Example

The pair (\mathbb{N}, \leq) is a pre-ordered set.

Pre-orders

Example

The pair (\mathbb{N}, \leq) is a pre-ordered set.
Question
Is the pair (\emptyset, \emptyset) a pre-ordered set?

Pre-orders

Example

The pair (\mathbb{N}, \leq) is a pre-ordered set.
Question
Is the pair (\emptyset, \emptyset) a pre-ordered set?
Answer: Yes!

Pre-orders

Example

The pair (\mathbb{N}, \leq) is a pre-ordered set.
Question
Is the pair (\emptyset, \emptyset) a pre-ordered set?
Answer: Yes!
Example
The pair $(\{*\},\{(*, *)\})$ is a pre-ordered set.

Pre-orders

Definition

Let $\left(S, \preceq_{S}\right)$ and (T, \preceq_{T}) be two pre-ordered sets. A homomorphism from (S, \preceq_{S}) to (T, \preceq_{T}) is a function $h: S \rightarrow T$ such that, for all $x, y \in S$,

$$
x \preceq_{S} y \quad \text { implies } \quad h x \preceq_{T} h y .
$$

Pre-orders

Definition

Let $\left(S, \preceq_{S}\right)$ and (T, \preceq_{T}) be two pre-ordered sets. A homomorphism from (S, \preceq_{S}) to (T, \preceq_{T}) is a function $h: S \rightarrow T$ such that, for all $x, y \in S$,

$$
x \preceq_{S} y \quad \text { implies } \quad h x \preceq_{T} h y .
$$

That is, a homomorphism from $\left(S, \preceq_{S}\right)$ to $\left(T, \preceq_{T}\right)$ is a monotone map $h: S \rightarrow T$.

Partial Orders

Partial Orders

Definition

Let P be a set and let \preceq be a binary relation on P. The relation \preceq is a partial order iff it satisfies

$$
\begin{aligned}
& \forall x(x \preceq x) \\
& \forall x \forall y(x \preceq y \preceq x \rightarrow x=y) \\
& \forall x \forall y \forall z(x \preceq y \preceq z \rightarrow x \preceq z)
\end{aligned}
$$

(reflexivity)
(anti-symmetry)
(transitivity)

The pair (P, \preceq) is a partially ordered set (or poset).

Partial Orders

Example

The pre-ordered sets $(\mathbb{N}, \leq),(\emptyset, \emptyset)$ and $(\{*\},\{(*, *)\})$ are posets.

Partial Orders

Question

Are pre-ordered sets which are not posets?

Partial Orders

Question

Are pre-ordered sets which are not posets?
Answer: Yes! The figure shows an example.

Partial Orders

Definition

Let $\left(S, \preceq_{S}\right)$ and (T, \preceq_{T}) be two posets. A homomorphism from $\left(S, \preceq_{S}\right)$ to $\left(T, \preceq_{T}\right)$ is a function $h: S \rightarrow T$ such that, for all $x, y \in S$,

$$
x \preceq_{S} y \quad \text { implies } \quad h x \preceq_{T} h y .
$$

Partial Orders

Definition

Let $\left(S, \preceq_{S}\right)$ and $\left(T, \preceq_{T}\right)$ be two posets. An order isomorphism from (S, \preceq_{S}) to $\left(T, \preceq_{T}\right)$ is a one-one correspondence $h: S \rightarrow T$ such that, for all $x, y \in S$,

$$
x \preceq_{S} y \quad \text { iff } \quad h x \preceq_{T} h y .
$$

Partial Orders

Definition

Let $\left(S, \preceq_{S}\right)$ and $\left(T, \preceq_{T}\right)$ be two posets. The product of posets S and T is the poset $(S \times T, \preceq)$ where the product order \preceq is defined by:

For all $x_{1}, x_{2} \in S$ and $y_{1}, y_{2} \in T$,

$$
\left(x_{1}, y_{1}\right) \preceq\left(x_{2}, y_{2}\right) \quad \text { iff } \quad x_{1} \preceq_{S} x_{2} \text { and } y_{1} \preceq_{T} y_{2} .
$$

Relational Structures

Relational Structures

Definition

Let L be a signature of a relational structure consisting of function and relation symbols, and let A and B be two L-structures. A homomorphism from A to B is a mapping h from the domain of A to the domain of B such that ${ }^{\dagger}$
(i) for each n-ary function symbol F in L,

$$
h\left(F^{A} x_{1} \ldots x_{n}\right)=F^{B}\left(h x_{1}\right) \ldots\left(h x_{n}\right)
$$

(ii) for each n-ary relation symbol R in L,

$$
R^{A}\left(x_{1}, \ldots, x_{n}\right) \text { implies } R^{B}\left(h x_{1}, \ldots, h x_{n}\right) .
$$

[^0]
Topological Spaces

Topological Spaces

Definition

A topology on a set X is a collection τ of subsets of X such that
(i) \emptyset and X are belong to τ,
(ii) the union of (finite or infinite) members of τ belongs to τ,
(iii) the intersection of finite members of τ belongs to τ.

The pair (X, τ) is a topological space.

Topological Spaces

Example
Let τ be the set of all open intervals in \mathbb{R}. The pair (\mathbb{R}, τ) is a topological space.

Topological Spaces

Example

Let τ be the set of all open intervals in \mathbb{R}. The pair (\mathbb{R}, τ) is a topological space.
Example
Let $\mathcal{P} S$ be the power set of the set S. The pair $(S, \mathcal{P} S)$ is a topological space.

Topological Spaces

Example

The pair $(\emptyset,\{\emptyset\})$ is a topological space.

Topological Spaces

Example

The pair $(\emptyset,\{\emptyset\})$ is a topological space.
Example
The pair $(\{*\},\{\emptyset,\{*\}\})$ is a topological space.

Topological Spaces

Definition
Let $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ be topological spaces. A function $f: X \rightarrow Y$ is continuous iff for all $V \in \tau_{Y}, f^{-1}(V) \in \tau_{X}$.

Topological Spaces

Definition
Let (X, τ) be topological space. A base (or basis) for τ is a collection $B \subset \tau$ such that every open set is a union of elements of B.

Topological Spaces

Definition

Let $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ be topological spaces. The product topological space of X and Y is the topological space $\left(X \times Y, \tau_{X \times Y}\right)$, where $\tau_{X \times Y}$ is the topology generated by the Cartesian product $U_{X} \times U_{Y} \subset X \times Y$ of open sets $U_{x} \subset X$ and $U_{Y} \subseteq Y$.

Category Theory

Axiomatic Category Theory

Remark
The following definition was adapted from [Mac Lane 1971].

Axiomatic Category Theory

Remark

The following definition was adapted from [Mac Lane 1971].

Definition

Axiomatic Category Theory is the following two-sorted first-order theory with equality:

- The sorts of the theory are Obj() (objects), denoted by A, B, C, \ldots, and $\operatorname{Ar}()$ (arrows), denoted by f, g, h, \ldots.

Axiomatic Category Theory

Definition (continuation)

- The undefined terms (language) of the theory are the function symbols ${ }^{\dagger}$

```
dom: }\langle\operatorname{Ar}(),Obj()
cod: < Ar(),Obj()\rangle
    id : <Obj(), Ar()\rangle
    (domain),
    (codomain),
(identity arrow),
```

and the relation symbol

```
comp : <Ar(), Ar(), Ar()\rangle
(arrow composition).
```

(continued on next slide)

[^1]
Axiomatic Category Theory

Definition (continuation)
Notation. An arrow f with $\operatorname{dom} f=A$ and $\operatorname{cod} f=B$ is written $f: A \rightarrow B$.
Notation. The arrow $\operatorname{id}(A)$ is denoted id_{A}.

Axiomatic Category Theory

Definition (continuation)

- Non-logical axioms
(i) For all arrows f and g, if $f: A \rightarrow B$ and $g: B \rightarrow C$ then there exists an unique arrow $h: A \rightarrow C$, such as $\operatorname{comp}(f, g, h)$.

Notation. If $\operatorname{comp}(f, g, h)$ then the arrow h is denoted $g \circ f$.
(ii) For all arrows f, g and h, if $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$ then

$$
h \circ(g \circ f)=(h \circ g) \circ f .
$$

(iii) For all object $\left.A, \operatorname{dom}_{\left(\mathrm{id}_{A}\right)}\right)=\operatorname{cod}\left(\mathrm{id}_{A}\right)=A$.
(iv) For all arrow f, if $f: A \rightarrow B$ then

$$
f \circ \operatorname{id}_{A}=f=\operatorname{id}_{B} \circ f .
$$

Axiomatic Category Theory

Remark
In general, would be incorrect to define categories as models of the previous two-sorted theory because, because set theory models would not include large categories.

References

References

Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3-94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).
Birkhoff, G. (1946). Universal Algebra. In: Comptes Rendus du Premier Congrès Canadien de Mathématiques. University of Toronto Press, pp. 310-326 (cit. on p. 17).
(1987). Universal Algebra. In: Selected Papers on Algebra and Topology by Garrett Birkhoff. Ed. by Rota, G.-C. and Oliveira, J. S. Birkhäuser, pp. 146-162 (cit. on p. 17).
Cohn, P. M. [1965] (1981). Universal Algebra. Revised edition. Vol. 6. Mathematics and Its Applications. D. Reidel Publishing Company (cit. on p. 19).
Enderton, H. B. [1972] (2001). A Mathematical Introduction to Logic. 2nd ed. Academic Press (cit. on p. 50).
Mac Lane, S. (1971). Categorical Algebra and Set-Theoretic Foundations. In: Axiomatic Set Theory, Part I. Ed. by Scott, D. S. Vol. XIII. Proceedings of Symposia in Pure Mathematics. American Mathematical Society, pp. 231-240 (cit. on pp. 48, 49).

[^0]: ${ }^{\dagger}$ From https://en.wikipedia.org/wiki/Homomorphism.

[^1]: ${ }^{\dagger}$ The notation $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$ denotes a sort in many-sorted logic. See, for example, [Enderton 2001].

