Automata and Formal Languages - CM0081
Proving Languages Not to Be Regular

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2018-2
Properties of Regular Languages

- Proving languages not to be regular
- Closure properties
- Decision properties
- Equivalence and minimization of automata
Introduction

- Is \(L = \{0^m 1^n \mid m, n \geq 0\} \) a regular language?

Yes! \(L = L(0^* 1^*) \).

Yes! \(L = L(0^+ 1^+) \).

Yes! \(L = L(000^* 11111^*) \).

No! Informal proof (whiteboard).
The Pumping Lemma

Introduction

- Is $L = \{0^m1^n \mid m, n \geq 0\}$ a regular language?

 Yes! $L = L(0^*1^*)$.

Proving Languages Not to Be Regular
The Pumping Lemma

Introduction

- Is $L = \{0^m1^n \mid m, n \geq 0\}$ a regular language?
 Yes! $L = L(0^*1^*)$.

- Is $L = \{0^m1^n \mid m, n \geq 1\}$ a regular language?
The Pumping Lemma

Introduction

- Is \(L = \{0^m1^n \mid m, n \geq 0\} \) a regular language?
 - Yes! \(L = L(0^*1^*) \).

- Is \(L = \{0^m1^n \mid m, n \geq 1\} \) a regular language?
 - Yes! \(L = L(0^+1^+) \).
The Pumping Lemma

Introduction

- Is $L = \{0^m 1^n \mid m, n \geq 0\}$ a regular language?
 Yes! $L = L(0^* 1^*)$.

- Is $L = \{0^m 1^n \mid m, n \geq 1\}$ a regular language?
 Yes! $L = L(0^+ 1^+)$.

- Is $L = \{0^m 1^n \mid m \geq 2, n \geq 4\}$ a regular language?
Introduction

- Is $L = \{0^m1^n \mid m, n \geq 0\}$ a regular language?
 Yes! $L = L(0^*1^*)$.

- Is $L = \{0^m1^n \mid m, n \geq 1\}$ a regular language?
 Yes! $L = L(0^+1^+)$.

- Is $L = \{0^m1^n \mid m \geq 2, n \geq 4\}$ a regular language?
 Yes! $L = L(000^*11111^*)$.

The Pumping Lemma
The Pumping Lemma

Introduction

- Is $L = \{0^m1^n \mid m, n \geq 0\}$ a regular language?
 Yes! $L = L(0^*1^*)$.

- Is $L = \{0^m1^n \mid m, n \geq 1\}$ a regular language?
 Yes! $L = L(0^+1^+)$.

- Is $L = \{0^m1^n \mid m \geq 2, n \geq 4\}$ a regular language?
 Yes! $L = L(000^*11111^*)$.

- Is $L_{01} = \{0^n1^n \mid n \geq 1\}$ a regular language?
The Pumping Lemma

Introduction

- Is $L = \{0^m1^n \mid m, n \geq 0\}$ a regular language?
 Yes! $L = L(0^*1^*)$.
- Is $L = \{0^m1^n \mid m, n \geq 1\}$ a regular language?
 Yes! $L = L(0^+1^+)$.
- Is $L = \{0^m1^n \mid m \geq 2, n \geq 4\}$ a regular language?
 Yes! $L = L(000^*11111^*)$.
- Is $L_{01} = \{0^n1^n \mid n \geq 1\}$ a regular language?
 No! Informal proof (whiteboard).
The Pumping Lemma

Theorem (Pumping Lemma for regular languages, 4.1)

Let L be a regular language, then

$$(\exists n \in \mathbb{Z}^+)(\forall w \in L)(|w| \geq n \Rightarrow (\exists x \exists y \exists z)(w = xyz))$$

such that

1. $y \neq \varepsilon$,
2. $|xy| \leq n$ and
3. $(\forall k \geq 0) \ xy^kz \in L$.

Proving Languages Not to Be Regular
The Pumping Lemma

Proof.

1. Suppose \(L \) is a regular language. Exist a DFA \(A = (Q, \Sigma, \delta, q_0, F) \) with \(n \) states such that \(L(A) = L \).
The Pumping Lemma

Proof.

1. Suppose L is a regular language. Exist a DFA $A = (Q, \Sigma, \delta, q_0, F)$ with n states such that $L(A) = L$.

2. Let $w = a_1 \ldots a_m \in L$, $m \geq n$ and $q_i = \hat{\delta}(q_0, a_1 \ldots a_i)$.

-Proving Languages Not to Be Regular-
The Pumping Lemma

Proof.

1. Suppose L is a regular language. Exist a DFA $A = (Q, \Sigma, \delta, q_0, F)$ with n states such that $L(A) = L$.

2. Let $w = a_1 \ldots a_m \in L$, $m \geq n$ and $q_i = \hat{\delta}(q_0, a_1 \ldots a_i)$.

3. By the pigeonhole principle, exists i and j, with $0 \leq i < j \leq n$ such that $q_i = q_j$.

Proving Languages Not to Be Regular
The Pumping Lemma

Proof.

1. Suppose L is a regular language. Exist a DFA $A = (Q, \Sigma, \delta, q_0, F)$ with n states such that $L(A) = L$.

2. Let $w = a_1 \ldots a_m \in L$, $m \geq n$ and $q_i = \hat{\delta}(q_0, a_1 \ldots a_i)$.

3. By the pigeonhole principle, exists i and j, with $0 \leq i < j \leq n$ such that $q_i = q_j$.

4. Let $w = xyz$ where

$$y = a_{i+1} \ldots a_j$$

$$x = a_1 \ldots a_i$$

$$z = a_{j+1} \ldots a_m$$
The Pumping Lemma

Proof.

1. Suppose L is a regular language. Exist a DFA $A = (Q, \Sigma, \delta, q_0, F)$ with n states such that $L(A) = L$.

2. Let $w = a_1 \ldots a_m \in L$, $m \geq n$ and $q_i = \hat{\delta}(q_0, a_1 \ldots a_i)$.

3. By the pigeonhole principle, exists i and j, with $0 \leq i < j \leq n$ such that $q_i = q_j$.

4. Let $w = xyz$ where

\[y = a_{i+1} \ldots a_j \]

\[x = a_1 \ldots a_i \]

\[z = a_{j+1} \ldots a_m \]

5. Then $(\forall k \geq 0) \; xyz^k \in L$.

\[
\begin{align*}
\text{start} & \rightarrow q_0 \\
& \quad \xrightarrow{x = a_1 \ldots a_i} q_i \\
& \quad \xrightarrow{y = a_{i+1} \ldots a_j} q_i \\
& \quad \xrightarrow{z = a_{j+1} \ldots a_m} q_f
\end{align*} \]
Application of the Pumping Lemma: Proving Languages Not to Be Regular

Method
Whiteboard
Method
Whiteboard

Exercise (4.1.2.e)
Let $\Sigma = \{0, 1\}$ be an alphabet and let $L = \{ww \mid w \in \Sigma^*\}$ be the so-called copy language. Prove that L is not regular.
Exercise (cont.)

Proof.

1. Suppose L is regular.
Exercise (cont.)

Proof.

1. Suppose L is regular.
2. Let $n \in \mathbb{Z}^+$ be a constant (according to the Pumping Lemma).
Proof.

1. Suppose L is regular.
2. Let $n \in \mathbb{Z}^+$ be a constant (according to the Pumping Lemma).
3. Let $w = 0^n1^n1 \in L$ and $|w| \geq n$.

Exercise (cont.)
Exercise (cont.)

Proof.

1. Suppose L is regular.
2. Let $n \in \mathbb{Z}^+$ be a constant (according to the Pumping Lemma).
3. Let $w = 0^n10^n1 \in L$ and $|w| \geq n$.
4. For the Pumping Lemma exists x, y and z such that $w = xyz$, $|xy| \leq n$, $y \neq \varepsilon$ and $\forall k \geq 0. xy^kz \in L$.
Proof.

1. Suppose L is regular.
2. Let $n \in \mathbb{Z}^+$ be a constant (according to the Pumping Lemma).
3. Let $w = 0^n10^n1 \in L$ and $|w| \geq n$.
4. For the Pumping Lemma exists x, y and z such that $w = xyz$, $|xy| \leq n$, $y \neq \varepsilon$ and $\forall k \geq 0. xy^kz \in L$.
5. Then $y = 0^m$, $0 < m \leq n$.

Exercise (cont.)
Application of the Pumping Lemma: Proving Languages Not to Be Regular

Exercise (cont.)

Proof.

1. Suppose \(L \) is regular.
2. Let \(n \in \mathbb{Z}^+ \) be a constant (according to the Pumping Lemma).
3. Let \(w = 0^n10^n1 \in L \) and \(|w| \geq n \).
4. For the Pumping Lemma exists \(x, y \) and \(z \) such that \(w = xyz \), \(|xy| \leq n \), \(y \neq \varepsilon \) and \(\forall k \geq 0. \ xy^kz \in L \).
5. Then \(y = 0^m \), \(0 < m \leq n \).
6. But, \(xy^0z \notin L \) which is a contradiction by the Pumping Lemma.
Exercise (cont.)

Proof.

1. Suppose \(L \) is regular.
2. Let \(n \in \mathbb{Z}^+ \) be a constant (according to the Pumping Lemma).
3. Let \(w = 0^n10^n1 \in L \) and \(|w| \geq n \).
4. For the Pumping Lemma exists \(x, y \) and \(z \) such that \(w = xyz \), \(|xy| \leq n \), \(y \neq \varepsilon \) and \(\forall k \geq 0. \ xy^kz \in L \).
5. Then \(y = 0^m \), \(0 < m \leq n \).
6. But, \(xy^0z \notin L \) which is a contradiction by the Pumping Lemma.
7. Therefore, \(L \) is not regular.
Exercise (4.1.2.a)
Let L be the language

$$L = \{0^n \mid n \text{ is a perfect square}\}.$$

Prove that L is not regular.
Exercise (cont.)

Proof.

1. Suppose L is regular.
Application of the Pumping Lemma: Proving Languages Not to Be Regular

Exercise (cont.)

Proof.

1. Suppose L is regular.

2. Let $n \in \mathbb{Z}^+$ be a constant (according to the Pumping Lemma).
Exercise (cont.)

Proof.

1. Suppose L is regular.

2. Let $n \in \mathbb{Z}^+$ be a constant (according to the Pumping Lemma).

3. Let $w = 0^{n^2} \in L$ and $|w| \geq n$.
Exercise (cont.)

Proof.

1. Suppose \(L \) is regular.

2. Let \(n \in \mathbb{Z}^+ \) be a constant (according to the Pumping Lemma).

3. Let \(w = 0^{n^2} \in L \) and \(|w| \geq n \).

4. For the Pumping Lemma exists \(x, y \) and \(z \) such that \(w = xyz \), \(|xy| \leq n \), \(y \neq \varepsilon \) and \(\forall k \geq 0. xy^kz \in L \).
Application of the Pumping Lemma: Proving Languages Not to Be Regular

Exercise (cont.)

Proof.

1. Suppose L is regular.

2. Let $n \in \mathbb{Z}^+$ be a constant (according to the Pumping Lemma).

3. Let $w = 0^{n^2} \in L$ and $|w| \geq n$.

4. For the Pumping Lemma exists x, y and z such that $w = xyz$, $|xy| \leq n$, $y \neq \varepsilon$ and $\forall k \geq 0. \ xy^kz \in L$.

5. Then $y = 0^m$, $0 < m \leq n$ and $n^2 + 1 \leq |xyyz| \leq n^2 + n$.
Exercise (cont.)

Proof.

1. Suppose L is regular.
2. Let $n \in \mathbb{Z}^+$ be a constant (according to the Pumping Lemma).
3. Let $w = 0^{n^2} \in L$ and $|w| \geq n$.
4. For the Pumping Lemma exists x, y and z such that $w = xyz$, $|xy| \leq n$, $y \neq \varepsilon$ and $\forall k \geq 0. \ xy^kz \in L$.
5. Then $y = 0^m$, $0 < m \leq n$ and $n^2 + 1 \leq |xyyz| \leq n^2 + n$.
6. Since the next perfect square after n^2 is $(n + 1)^2 = n^2 + 2n + 1$, we know that $xyyz \notin L$ ($|xyyz|$ is strictly between the consecutive perfect squares n^2 and $(n + 1)^2$).
Application of the Pumping Lemma: Proving Languages Not to Be Regular

Exercise (cont.)

Proof.

1. Suppose \(L \) is regular.

2. Let \(n \in \mathbb{Z}^+ \) be a constant (according to the Pumping Lemma).

3. Let \(w = 0^{n^2} \in L \) and \(|w| \geq n \).

4. For the Pumping Lemma exists \(x, y \) and \(z \) such that \(w = xyz \), \(|xy| \leq n \), \(y \neq \varepsilon \) and \(\forall k \geq 0. \ xy^kz \in L \).

5. Then \(y = 0^m \), \(0 < m \leq n \) and \(n^2 + 1 \leq |xyyz| \leq n^2 + n \).

6. Since the next perfect square after \(n^2 \) is \((n + 1)^2 = n^2 + 2n + 1 \), we know that \(xy^yz \not\in L \) (\(|xyyz|\) is strictly between the consecutive perfect squares \(n^2 \) and \((n + 1)^2 \)).

7. This a contradiction by the Pumping Lemma.
Application of the Pumping Lemma: Proving Languages Not to Be Regular

Exercise (cont.)

Proof.

1. Suppose \(L \) is regular.
2. Let \(n \in \mathbb{Z}^+ \) be a constant (according to the Pumping Lemma).
3. Let \(w = 0^{n^2} \in L \) and \(|w| \geq n \).
4. For the Pumping Lemma exists \(x, y \) and \(z \) such that \(w = xyz \), \(|xy| \leq n \), \(y \neq \varepsilon \) and \(\forall k \geq 0. \ xy^kz \in L \).
5. Then \(y = 0^m \), \(0 < m \leq n \) and \(n^2 + 1 \leq |xyyz| \leq n^2 + n \).
6. Since the next perfect square after \(n^2 \) is \((n + 1)^2 = n^2 + 2n + 1 \), we know that \(xyyz \notin L \) (\(|xyyz| \) is strictly between the consecutive perfect squares \(n^2 \) and \((n + 1)^2 \)).
7. This a contradiction by the Pumping Lemma.
8. Therefore, \(L \) is not regular.
Remark

Frishberg and Gasarch [2018] show other methods and some open problems when proving that a language is not regular.